This study describes a pharmacokinetic (PK) model to account for serum recombinant human erythropoietin (rHuEpo) concentrations in healthy volunteers following intravenous (IV) and subcutaneous (SC) dosing; it also characterizes the pharmacodynamics (PD) of SC rHuEpo effects on reticulocytes, red blood cells (RBC), and hemoglobin (Hb) in blood. Data were obtained from 4 clinical studies carried out in healthy volunteers. Epoetin alfa (rHuEpo) was administered as 5 single IV doses ranging from 10 to 500 IU/kg, as 8 single SC doses ranging from 300 to 2400 IU/kg, and as 2 multiple SC dosage regimens (150 IU/kg/3 times a week [tiw] and 600 IU/kg/wk). A dual-absorption rate model (fast zero-order and slow first-order inputs) with nonlinear disposition characterized the PK of SC rHuEpo. A high K(m) value was obtained indicating that clearance was mildly nonlinear. Absorption was slow (t(max) approximately 24 hours), and the bioavailability of SC rHuEpo increased with dose (ranging from 46%-100%). A catenary cell production and loss model with a feedback down regulation component was used to fit the reticulocyte data yielding estimates of the stimulatory capacity (S(max)), sensitivity (SC(50)), and life span parameters. These parameters were used for simulations of RBC and Hb profiles. An SC(50) of 27 to 61 IU/L was estimated indicating that low physiological plasma rHuEpo concentrations were sufficient to produce pharmacological effects. No marked sex-dependent differences in clinical responses to rHuEpo therapy were found despite baseline differences. Realistic pharmacokinetic and physiological models accounted for clinical responses from a wide array of dosing conditions with rHuEpo. The rationale for greater efficacy of SC administration of rHuEpo compared to IV was ascertained.
An array of adverse steroid effects was examined on a whole body, tissue, and molecular level. Groups of male adrenalectomized Wistar rats were subcutaneously implanted with Alzet mini-pumps giving zero-order release rates of 0, 0.1, and 0.3 mg/kg/h methylprednisolone for 7 days. The rats were sacrificed at various times during the 7-day infusion period. A twocompartment model with a zero order input could adequately describe the kinetics of methylprednisolone upon infusion. Blood lymphocyte counts dropped to a minimum by 6 h and were well characterized by the cell trafficking model. The time course of changes in body and organ (liver, spleen, thymus, gastrocnemius muscle, and lungs) weights was described using indirect response models. Markers of gene-mediated steroid effects included hepatic cytosolic free receptor density, receptor mRNA, tyrosine aminotransferase (TAT) mRNA, and TAT levels. Our fifth-generation model of acute corticosteroid pharmacodynamics was used to predict the time course of receptor/gene-mediated effects. An excellent agreement between the expected and observed receptor dynamics suggested that receptor events and mRNA autoregulation are not altered upon 7-day methylprednisolone dosing. However, the model indicated a decoupling between the receptor and TAT dynamics with this infusion. The strong tolerance seen in TAT mRNA induction could be partly accounted for by receptor down-regulation. An amplification of translation of TAT mRNA to TAT and/or a reduction in the enzyme degradation rate could account for the observed exaggerated TAT activity. Our results exemplify the importance of biological signal transduction variables in controlling receptor/gene-mediated steroid responses during chronic dosing.
The pharmacokinetics (PK) and pharmacodynamics (PD) of recombinant human erythropoietin (rHuEpo) were investigated in monkeys. A two-compartment model with dual input and nonlinear disposition could adequately characterize the PK of rHuEpo upon three intravenous and six s.c. administrations. The kinetic model suggests rapid zero-order absorption of part of the s.c. dose (35%) followed by a slow first-order entry through the lymphatics. The s.c. treatments caused a delayed dose-dependent rise in reticulocyte numbers peaking between 100 and 200 h and returning to baseline by 300 to 400 h. This was followed by steady rises in red blood cell (RBC) and hemoglobin counts. A physiological catenary model based on a life span concept with rHuEpo stimulating the production of two cell populations (progenitor cells and erythroblasts) was applied. The model could adequately describe the reticulocyte responses upon the various s.c. treatments, giving estimates of maturation times for cells in the various stages of differentiation including the early progenitor cells (70.4 h), erythroblasts (15.0 h), and reticulocytes (141.6 h) that are close to the literature reported values. An S max of 3.13 was estimated indicating a moderate maximum stimulation of erythropoiesis, whereas the SC 50 was 842 IU/l. The model was used to effectively predict the increases in RBC and hemoglobin counts as well. In conclusion, the physiological PK/PD model developed could adequately describe the time course of rHuEpo effects, yielding realistic estimates of cell life span parameters.Erythropoiesis involves a sequence of cellular differentiations that are controlled by specific hematopoietic growth factors. Erythropoietin (Epo) is a key lineage-specific humoral regulator of mammalian erythropoiesis. The recombinant form of human erythropoietin (rHuEpo) is structurally very similar to endogenous Epo (Egrie, 1990). It exerts its biological effects by binding to specific receptors in the bone marrow cells, which causes them to undergo a 5-to 9-day process of cellular proliferation, differentiation, and maturation leading to an increase in reticulocyte counts followed by rises in hematocrit and hemoglobin levels in the blood (Flaharty, 1990).rHuEpo has been shown to be an effective alternative to blood transfusion, ameliorating anemia associated with a variety of indications and producing consequent improvements in quality of life in many renal (Lundin et al., 1990) and nonrenal applications (Markham and Bryson, 1995) in humans. Several investigators have reported pharmacokinetic and dynamic studies of rHuEpo in humans and many animal species, including mouse, rat, dog, rabbit, sheep, and horse (Fu et al., 1988;Jaussaud et al., 1994;Bleuel et al., 1996;Souillard et al., 1996;Widness et al., 1996;Yoon et al., 1997;Cheung et al., 1998;Chapel et al., 2000;Kato et al., 2001). A clear mathematical quantification of the kinetics and dynamics of rHuEpo effects would greatly facilitate rational design of optimal dosage regimens and aid therapy. The Epo...
A fifth-generation model for receptor/gene-mediated corticosteroid effects was proposed based on results from a 50 mg/kg i.v. bolus dose of methylprednisolone (MPL) in male adrenalectomized rats, and confirmed using data from other acute dosage regimens. Steady-state equations for receptor down-regulation and tyrosine aminotransferase (TAT) enzyme induction patterns were derived. Five groups of male Wistar rats (n = 5/group) were subcutaneously implanted with Alzet mini-pumps primed to release saline or 0.05, 0.1, 0.2, and 0.3 mg/kg/hr of MPL for 7 days. Rats were sacrificed at the end of the infusion. Plasma MPL concentrations, blood lymphocyte counts, and hepatic cytosolic free receptor density, receptor mRNA, TAT mRNA, and TAT enzyme levels were quantitated. The pronounced steroid effects were evidenced by marked losses in body weights and changes in organ weights. All four treatments caused a dose-dependent reduction in hepatic receptor levels, which correlated with the induction of TAT mRNA and TAT enzyme levels. The 7 day receptor mRNA and free receptor density correlated well with the model predicted steady-state levels. However, the extent of enzyme induction was markedly higher than that predicted by the model suggesting that the usual receptor/gene-mediated effects observed upon single/intermittent dosing of MPL may be countered by alterations in other aspects of the system. A mean IC50 of 6.1 ng/mL was estimated for the immunosuppressive effects of methylprednisolone on blood lymphocytes. The extent and duration of steroid exposure play a critical role in mediating steroid effects and advanced PK/PD models provide unique insights into controlling factors.
The single-dose population estimate of the area under the concentration-time curve (AUC(pop)) from time zero to infinity (AUC(0-infinity)), maximum plasma concentration (C(max)), and time to C(max) (t(max)) of montelukast 4-mg oral granules were investigated in infants aged 3 to 6 months. Montelukast concentrations were quantitated after a single 4-mg dose of montelukast oral granules. Pharmacokinetic parameters were determined using a population-based approach with a nonlinear mixed-effect, 1-compartment model with first-order absorption and elimination. Ninety-five percent confidence intervals for the AUC(pop) ratio (3 to 6 months/6 to 24 months) were determined. Safety and tolerability were assessed. Montelukast 4-mg oral granules in children 3 to 6 months of age yielded systemic exposure (AUC(pop) = 3644.3 +/- 481.5 ng x h/mL) similar to that observed in children aged 6 to 24 months (3226.6 +/- 250.0 ng x h/mL). Systemic exposure after a 4-mg dose of montelukast as oral granules is similar in children aged 3 to 6 months and 6 to 24 months.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.