Propelled partly by the Materials Genome Initiative, and partly by the algorithmic developments and the resounding successes of data-driven efforts in other domains, informatics strategies are beginning to take shape within materials science. These approaches lead to surrogate machine learning models that enable rapid predictions based purely on past data rather than by direct experimentation or by computations/simulations in which fundamental equations are explicitly solved. Data-centric informatics methods are becoming useful to determine material properties that are hard to measure or compute using traditional methods-due to the cost, time or effort involved-but for which reliable data either already exists or can be generated for at least a subset of the critical cases. Predictions are typically interpolative, involving fingerprinting a material numerically first, and then following a mapping (established via a learning algorithm) between the fingerprint and the property of interest. Fingerprints may be of many types and scales, as dictated by the application domain and needs. Predictions may also be extrapolative-extending into new materials spaces-provided prediction uncertainties are properly taken into account. This article attempts to provide an overview of some of the recent successful data-driven "materials informatics" strategies undertaken in the last decade, and identifies some challenges the community is facing and those that should be overcome in the near future.
Force fields developed with machine learning methods in tandem with quantum mechanics are beginning to find merit, given their (i) low cost, (ii) accuracy, and (iii) versatility. Recently, we proposed one such approach, wherein, the vectorial force on an atom is computed directly from its environment. Here, we discuss the multi-step workflow required for their construction, which begins with generating diverse reference atomic environments and force data, choosing a numerical representation for the atomic environments, down selecting a representative training set, and lastly the learning method itself, for the case of Al. The constructed force field is then validated by simulating complex materials phenomena such as surface melting and stressstrain behavior -that truly go beyond the realm of ab initio methods both in length and time scales. To make such force fields truly versatile an attempt to estimate the uncertainty in force predictions is put forth, allowing one to identify areas of poor performance and paving the way for their continual improvement.
Simulations based on solving the Kohn-Sham (KS) equation of density functional theory (DFT) have become a vital component of modern materials and chemical sciences research and development portfolios. Despite its versatility, routine DFT calculations are usually limited to a few hundred atoms due to the computational bottleneck posed by the KS equation. Here we introduce a machine-learning-based scheme to efficiently assimilate the function of the KS equation, and by-pass it to directly, rapidly, and accurately predict the electronic structure of a material or a molecule, given just its atomic configuration. A new rotationally invariant representation is utilized to map the atomic environment around a grid-point to the electron density and local density of states at that grid-point. This mapping is learned using a neural network trained on previously generated reference DFT results at millions of grid-points. The proposed paradigm allows for the high-fidelity emulation of KS DFT, but orders of magnitude faster than the direct solution. Moreover, the machine learning prediction scheme is strictly linear-scaling with system size.
The surprising ferroelectricity displayed by hafnia thin films has been attributed to a metastable polar orthorhombic (Pca2 1 ) phase. Nevertheless, the conditions under which this (or another competing) ferroelectric phase may be stabilized remain unresolved. It has been hypothesized that a variety of factors, including strain, grain size, electric field, impurities and dopants, may contribute to the observed ferroelectricity. Here, we use first-principles computations to examine the influence of mechanical and electrical boundary conditions (i.e., strain and electric field) on the relative stability of a variety of relevant nonpolar and polar phases of hafnia. We find that although strain or electric field, independently, do not lead to a ferroelectric phase, the combined influence of in-plane equibiaxial deformation and electric field results in the emergence of the polar Pca2 1 structure as the equilibrium phase. The results provide insights for better controlling the ferroelectric characteristics of hafnia thin films by adjusting the growth conditions and electrical history.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.