This paper assesses the evolution of India's power sector to 2050 and identifies crucial low carbon technologies to meet its NDC and long-term climate change mitigation targets under various carbon emission rights allocation schemes using a multi-region global energy systems model TIAM-UCL where India is modelled as a separate region. Six scenarios were developed reference case, NDC, global 2°C and three scenarios where CO2 emissions of all model regions converged in 2050 based on criteria of GDP/capita, emissions intensity of GDP and per capita emissions. The analysis shows that emission rights allocation schemes influence the total energy system development costs, long-term electricity generation requirements, and share of renewables especially solar PV generation to meet the 2°C target. The model runs also show that solar-PV is the single most important generation technology for decarbonisation of India's power sector. Limiting the share of solar-PV generation can lead to 20% reduction in total electricity generation and increase system costs substantially for 2050. Further, the results also indicate that India may have 200-215 GW of stranded coal generation assets in 2050 in the low carbon scenarios. Our analysis suggest that India is one of those countries which are at the development stage and also highly risked with the lock-in in carbon emitting infrastructure especially coal-based generations unless action taken in the near-term.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.