Convolutional Neural Networks have provided state-ofthe-art results in several computer vision problems. However, due to a large number of parameters in CNNs, they require a large number of training samples which is a limiting factor for small sample size problems. To address this limitation, we propose SSF-CNN which focuses on learning the "structure" and "strength" of filters. The structure of the filter is initialized using a dictionary based filter learning algorithm and the strength of the filter is learned using the small sample training data. The architecture provides the flexibility of training with both small and large training databases, and yields good accuracies even with small size training data. The effectiveness of the algorithm is first demonstrated on MNIST, CIFAR10, and NORB databases, with varying number of training samples. The results show that SSF-CNN significantly reduces the number of parameters required for training while providing high accuracies on the test databases. On small sample size problems such as newborn face recognition and Omniglot, it yields stateof-the-art results. Specifically, on the IIITD Newborn Face Database, the results demonstrate improvement in rank-1 identification accuracy by at least 10%.
Dropout is often used in deep neural networks to prevent over-fitting. Conventionally, dropout training invokes random drop of nodes from the hidden layers of a Neural Network. It is our hypothesis that a guided selection of nodes for intelligent dropout can lead to better generalization as compared to the traditional dropout. In this research, we propose "guided dropout" for training deep neural network which drop nodes by measuring the strength of each node. We also demonstrate that conventional dropout is a specific case of the proposed guided dropout. Experimental evaluation on multiple datasets including MNIST, CIFAR10, CIFAR100, SVHN, and Tiny ImageNet demonstrate the efficacy of the proposed guided dropout.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.