In the world of semiconductors, organic–inorganic hybrid (OIH) halide perovskite is a new paradigm. Recently, a zealous effort has been made to design new lead-free perovskite-like OIH halides, such as perovskitoids and antiperovskites, for optoelectronic applications. In this context, we have synthesized a perovskitoid compound (Piperidinium)MnCl3 (compound 1) crystallizing in an orthorhombic structure with infinite one-dimensional (1D) chains of MnCl6 octahedra. Interestingly, this compound shows switchable dielectric property governed by an order–disorder structural transition. By controlling the stoichiometry of piperidine, we have synthesized an antiperovskite (Piperidinium)3Cl[MnCl4] (compound 2), the inverse analogue of a perovskite, consisting of zero-dimensional (0D) MnCl4 tetrahedra. This type of organic–inorganic hybrid antiperovskite halide is unique and scarce. Such a dissimilarity in lattice dimensionality and Mn2+ ion coordination ensues fascinating photophysical and magnetic properties. Compound 1 exhibits red emission with a photoluminescence quantum yield (PLQY) of ∼28%. On the other hand, the 0D antiperovskite compound 2 displays green emission with a higher PLQY of 54.5%, thanks to the confinement effect. In addition, the dimensionality of the compounds plays a vital role in the exchange interaction. As a result, compound 1 shows an antiferromagnetic ground state, whereas compound 2 is paramagnetic down to 1.8 K. This emerging structure–property relationship in OIH manganese halides will set the platform for designing new perovskites and antiperovskites.
It is believed that ferroelectrics may serve as efficient photocatalysts as well as photovoltaic materials but for their large bandgaps which does not allow them to absorb a large part of the solar spectrum. We have explored theoretically within ab-initio density functional theory-based calculations, the efficacy of Cu and Te to co-dope BaTiO3 in reducing its bandgap while retaining its ferroelectric properties. Examining a dopant concentration of 11%, we find an insulating ground state being realized with a band gap reduction of 0.42 eV from the value for undoped BaTiO3 for some doping configurations. Ferroelectric distortions are found to survive even in the presence of doping suggesting possible applications in photocatalysis as well as photovoltaics.
Analysing infection and mortality data for COVID-19 as a function of days for 54 countries across all continents, we show that there is a simple scaling behaviour connecting these two quantities for any given nation when the data is segmented over few ranges of dates covering the most rapid spread of the pandemic and the recovery, wherever achieved. This scaling is described by two parameters, one representing a shift along the time axis and the other is a normalisation factor, providing a reliable definition of the mortality rate for each country in a given period. The number of segments for any country required in our analyses turns out to be surprisingly few with as many as 16 out of 54 countries being described by a single segment and no country requiring more than three segments. Estimates of the shift and mortality for these 54 countries in different periods show large spreads ranging over 0-16 days and 0.45-19.96%, respectively. Shift and mortality are found to be inversely correlated. Analyses of number of tests carried out for detecting COVID-19 and the number of infections detected due to such tests suggest that an effective way to increase the shift, and therefore, decrease mortality, is to increase number of tests per infection detected. This points to the need of a dynamic management of testing that should accelerate with the rise of the pandemic; it also suggests a basis for adjusting variations in the testing patterns in different geographical locations within a given country.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.