Traumatic brain injury (TBI) is an important global health concern that represents a leading cause of death and disability. It occurs due to direct impact or hit on the head caused by factors such as motor vehicles, crushes, and assaults. During the past decade, an abundance of new evidence highlighted the importance of inflammation in the secondary damage response that contributes to neurodegenerative and neurological deficits after TBI. It results in disruption of the blood–brain barrier (BBB) and initiates the release of macrophages, neutrophils, and lymphocytes at the injury site. A growing number of researchers have discovered various signalling pathways associated with the initiation and progression of inflammation. Targeting different signalling pathways (NF-κB, JAK/STAT, MAPKs, PI3K/Akt/mTOR, GSK-3, Nrf2, RhoGTPase, TGF-β1, and NLRP3) helps in the development of novel anti-inflammatory drugs in the management of TBI. Several synthetic and herbal drugs with both anti-inflammatory and neuroprotective potential showed effective results. This review summarizes different signalling pathways, associated pathologies, inflammatory mediators, pharmacological potential, current status, and challenges with anti-inflammatory drugs.
Carbon-based nanomaterials are contemporary and are outpacing the technology platform. Graphene quantum dots (GQDs) had a significant impact on the subject of bioengineering, pharmaceuticals, biomedicine, biosensors, fuel, energy, etc. Depending on how quickly this field is developing, it is important to recognize the new difficulties that GQDs have to overcome. This is incredibly significant because many novel applications and innovations that have made GQD synthesis easier recently have not been systematically evaluated in prior studies. Their ability to combine the benefits of quantum dots, sp2 carbon materials (large specific surface area), and have rich functional groups at the edge makes them special. The naturally occurring inert carbon helps to stabilize chemical and physical characteristics and makes significant advancements in the creation of benchmark photocatalysts. Moreover, current challenges and potential of these rapidly developing GQDs are emphasized. The future of GQD research is limitless, according to the assessment in this review, notably if future research focuses on simplicity of purification and ecofriendly synthesis. This feature article offers a realistic summary on recent developments in the synthesis, characteristics, and uses of GQDs. Frequent review articles focusing on the progress of GQDs for specific applications are published but a thorough review article on GQDs for their numerous uses has not yet been published. The recent trends of scientific research based on new optical biosensing applications, including the comprehensive applications of different zero-dimensional nanomaterials, specially GQDs are discussed in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.