Current cloud infrastructures are important for their ease of use and performance. However, they suffer from several shortcomings. The main problem is inefficient data mobility due to the centralization of cloud resources. We believe such clouds are highly unsuited for dispersed-data-intensive applications, where the data may be spread at multiple geographical locations (e.g., distributed user blogs). Instead, we propose a new cloud model called Nebula: a dispersed, context-aware, and cost-effective cloud. We provide experimental evidence for the need for Nebulas using a distributed blog analysis application followed by the system architecture and components of our system.
The use of optical interconnects for communication between points on a microchip is motivated by system-level interconnect modeling showing the saturation of metal wire capacity at the global layer. Free-space optical solutions are analyzed for intrachip communication at the global layer. A multiscale solution comprising microlenses, etched compound slope microprisms, and a curved mirror is shown to outperform a single-scale alternative. Microprisms are designed and fabricated and inserted into an optical setup apparatus to experimentally validate the concept. The multiscale free-space system is shown to have the potential to provide the bandwidth density and configuration flexibility required for global communication in future generations of microchips.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.