This article investigates the relationship between rock properties (composition, porosity, and pore architecture) and dry ultrasonic P-wave velocity (VP) of 14 samples representing three facies of the Mid-Continent Mississippian-age Limestone (Miss Lime) units of North–Central Oklahoma. Generally, in carbonate rocks, what drives VP, in addition to bulk porosity (ϕ) and composition, is not straightforward to determine. In this data set, when samples are categorized based on their facies and composition (quartz fraction), VP shows a better trend with dominant pore size rather than ϕ. Results show the dependence of elastic properties on texture and highlight a need for incorporating pore-size distribution in seismic models used for seismic interpretation of low-permeability reservoirs such as the Miss Lime.
The effectiveness of publicity is of paramount significance for the complete success of World Expos. Based on an analysis of changes in the mode of publicity for past Expos, this chapter makes proposals with regard to publicity for the Shanghai World Expo to be held in 2010.
This paper investigates how nanopore size distribution influences dry-frame P-wave velocity (VP) pressure sensitivity. The study uses a set of twenty-three samples belonging to a single vertical core from the Mississippian-age Meramec formation of the mid-continent US. Individual samples had their facies interpreted, composition estimated, He-gas porosity (ΦHe) determined, and P-wave and S-wave transit times systematically measured for dry core-plugs in a 5–40 MPa loading and unloading cycle. Data from the unloading cycle were linearized in the log scale, and the slope of the best fitting line was considered as a representative of the dry-frame VP pressure sensitivity. A series of photomicrographs from each sample were analyzed using image processing methods to obtain the shape and size of the individual pores, which were mostly in the nanopore (10−6–10–9 m) scale. At the outset, the pore-shape distribution plots were used to identify and discard samples with excessive cracks and complex pores. When the remaining samples were compared, it was found that within the same facies and pore-shape distribution subgroups VP pressure sensitivity increased as the dominant pore-size became smaller. This was largely independent of ΦHe and composition. The paper postulates that at the nanopore scale in the Meramec formation, pores are mostly isolated, and an increase in the confining pressure increased the bulk moduli of the fluids in the isolated pores, which in turn increased the VP pressure sensitivity. The study proposes incorporating this effect quantitatively through a dual-fluid model where the part of the fluid in unconnected pores is considered compressible while the remaining is considered incompressible. Results start to explain the universal observation of why the presence of microporosity quintessentially enhances VP pressure sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.