Cotton is the natural fiber produced, and the commercial crop grown in monoculture on 2.5% of total agricultural land. Cotton is a drought-resistant crop that provides a reliable income to the farmers that grow under the area with a threat from climatic change. These cotton crops are being affected by bacterial, fungal, viral, and other parasitic diseases that may vary due to the climatic conditions resulting in the crop’s low productivity. The most prone to diseases is the leaf that results in the damage of the plant and sometimes the whole crop. Most of the diseases occur only on leaf parts of the cotton plant. The primary purpose of disease detection has always been to identify the diseases affecting the plant in the early stages using traditional techniques for better production. To detect these cotton leaf diseases appropriately, the prior knowledge and utilization of several image processing methods and machine learning techniques are helpful.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.