As the complexity of computer based systems increases, designers are faced with the task of balancing a variety of design choices and parameters against conflicting optimization criteria. Design space exploration seeks to automate or partially automate the process of evaluating tradeoff decisions at design time. DesertFD is a domain-independent design space exploration tool which facilitates the representation and pruning of a design space using constraint satisfaction. DesertFD offers a formal tree-based view of a family of systems related through common structure, together with a flexible scripting language for modeling mathematical expressions governing property composition. User-specified constraints applied to the design space representation result in a pruning of the space. We discuss the reduction of the design space, property composition formulas and constraints into a constraint satisfaction problem using finite domain constraints. We examine two example design space exploration problems to evaluate DesertFD: the generation of a high level custom computer architecture for supporting H.264-based motion estimation, and the reliabilitydriven mapping of tasks to distributed embedded control units in a steer-by-wire automotive application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.