Nanophotonics has been an active research field over the past two decades, triggered by the rising interests in exploring new physics and technologies with light at the nanoscale. As the demands of performance and integration level keep increasing, the design and optimization of nanophotonic devices become computationally expensive and time-inefficient. Advanced computational methods and artificial intelligence, especially its subfield of machine learning, have led to revolutionary development in many applications, such as web searches, computer vision, and speech/image recognition. The complex models and algorithms help to exploit the enormous parameter space in a highly efficient way. In this review, we summarize the recent advances on the emerging field where nanophotonics and machine learning blend. We provide an overview of different computational methods, with the focus on deep learning, for the nanophotonic inverse design. The implementation of deep neural networks with photonic platforms is also discussed.This review aims at sketching an illustration of the nanophotonic design with machine learning and giving a perspective on the future tasks.
Machine learning (ML) techniques, such as neural networks, have emerged as powerful tools for the inverse design of nanophotonic structures. However, this innovative approach suffers some limitations. A primary one is the nonuniqueness problem, which can prevent ML algorithms from properly converging because vastly different designs produce nearly identical spectra. Here, we introduce a mixture density network (MDN) approach, which models the design parameters as multimodal probability distributions instead of discrete values, allowing the algorithms to converge in cases of nonuniqueness without sacrificing degenerate solutions. We apply our MDN technique to inversely design two types of multilayer photonic structures consisting of thin films of oxides, which present a significant challenge for conventional ML algorithms due to a high degree of nonuniqueness in their optical properties. In the 10-layer case, the MDN can handle transmission spectra with high complexity and under varying illumination conditions. The 4-layer case tends to show a stronger multimodal character, with secondary modes indicating alternative solutions for a target spectrum. The shape of the distributions gives valuable information for postprocessing and about the uncertainty in the predictions, which is not available with deterministic networks. Our approach provides an effective solution to the inverse design of photonic structures and yields more optimal searches for the structures with high degeneracy and spectral complexity.
Deep learning (DL) has emerged as a promising tool for photonic inverse design. Nevertheless, despite the initial success in retrieving spectra of modest complexity with nearly instantaneous readout, DL-assisted design methods often underperform in accuracy compared with advanced optimization techniques and have not proven competitive in handling spectra of practical usefulness. Here, we introduce a tandem optimization model that combines a mixture density network (MDN) and a fully connected (FC) network to inversely design practical thin-film high reflectors. The multimodal nature of the MDN gives access to infinite candidate designs described by probability distributions, which are iteratively sampled and evaluated by the FC network to allow for rapid optimization. We show that the proposed model can retrieve the reflectance spectra of 20-layer thin-film structures. More interestingly, it reproduces with high precision the periodic structures of high reflectors derived from physical principles, even though no such information is included in the training data. Improved designs with extended high-reflectance zones are also demonstrated. Our approach combines the high-efficiency advantage of DL with the optimization-enabled performance improvement, enabling efficient and on-demand inverse design for practical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.