This work integrates in-situ neutron diffraction and crystal plasticity finite element modeling to study the kinematic stability of retained austenite in high carbon bearing steels. The presence of a kinematically metastable retained austenite in bearing steels can significantly affect the macro-mechanical and micro-mechanical material response. Mechanical characterization of metastable austenite is a critical component in accurately capturing the micro-mechanical behavior under typical application loads. Traditional mechanical characterization techniques are unable to discretely quantify the micro-mechanical response of the austenite , and as a result, the computational predictions rely heavily on trial and error or qualitative descriptions of the austenite phase. In order to overcome this, in the present work, we use in-situ neutron diffraction of a uniaxial tension test of an A485 Grade 1 bearing steel specimen. The mechanical response determined from the neutron diffraction analysis was incorporated into a hybrid crystal plasticity finite element model that accounts for the martensite's crystal plasticity and the stress-assisted transformation from austenite to martensite in bearing steels. The modeling response was used to estimate the single crystal elastic constants of the austenite and martensite phases. The resultsshow that using in-situ neutron diffraction, coupled with a crystal plasticity model, can successfully predict both the micro-mechanical and macro-mechanical responses of bearing steels while accounting for the martensitic transformation of the retained austenite.
Fatigue failure is the dominant mechanism that governs the failure of components and structures in many engineering applications. In conventional engineering applications due to the design specifications, a significant proportion of the fatigue life is spent in the crack initiation phase. In spite of the large number of works addressing fatigue life modelling, the problem of modelling crack initiation life still remains a major challenge in the scientific and engineering community. In the present work, we present a methodology for estimating fatigue crack initiation life using macroscale loading conditions and the microstructural phenomenon causing crack initiation. Microstructure sensitive modelling is used for predicting potential crack initiation life by employing randomly generated representative microstructures. The microstructural parameters contributing to crack initiation life are identified and accounted for by computing lattice level energy dissipation during fatigue crack initiation. This model is coupled with experimental results to improve the predictive capabilities and identification of potentially damaging weak points in the microstructures. The estimated values for crack initiation life were found to be in good agreement with the experimentally observed values of initiation life. The results have shown that this kind of approach could be successfully used to predict crack initiation life in polycrystalline materials. This work successfully provides an approach for estimating crack initiation life based upon numerical computations accounting for the microstructural phenomenon.
In situ neutron diffraction of the uniaxial tension test was used to study the effect of the surrounding matrix microstructure on the mechanical stability of retained austenite in highcarbon bearing steels. Comparing the samples with bainitic microstructures to those with martensitic ones it was found that the retained austenite in a bainitic matrix starts transforming into martensite at a lower strain compared to that within a martensitic matrix. On the other hand, the rate of transformation of the austenite was found to be higher within a martensitic microstructure. Crystal plasticity modeling was used to analyze the transformation phenomenon in these two microstructures and determine the effect of surrounding microstructure on elastic, plastic and transformation components of the strain. The results showed that the predominant difference in the deformation accumulated was from the transformation strain and the critical transformation driving force within the two microstructures. The retained austenite was more stable for identical loading conditions in case of martensitic matrix compared to the bainitic one.It was also observed that the initial volume fraction of retained austenite within the bainitic matrix would alter the onset of transformation to martensite but not the rate of transformation.
Fatigue crack initiation life prediction is a fundamentally challenging problem that is of prime importance as a significant portion of the fatigue life is spent in the initiation phase. In spite of the extensive efforts of research over the past two decades, the concept of crack initiation still remains as an enigma in science. The major challenges in predicting crack initiation life in industry are the evaluation of the crack initiation parameters such as the maximum resolved shear stress range, maximum slip band width and the energy efficiency coefficient. In this paper, we show that the energy efficiency can be successfully estimated with good accuracy by performing lattice level crystal plasticity‐based computational simulations on representative models. The lattice level plasticity‐based finite element computations are reported for the case of single crystal copper in this work, and the results show that this strategy leads to higher accuracy than the existing idea of approximating the efficiency factor. The results show that this strategy could be of great use in improving the reliability in prediction of crack initiation life. The effectiveness of this computational procedure would greatly reduce the financial investments necessary to perform experimental analysis of all structures to determine the crack initiation parameters, as it would require just a single measurement to quantify the measurement of efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.