Abstract-In order to support real-time face recognition using a wireless camera network, we design a data acquisition service to quickly and reliably acquire face images of human subjects from multiple views and to simultaneously index each acquired image into its corresponding pose. In comparison with detection of frontal faces, the detection of non-frontal faces with unknown pose is a much more challenging problem that involves significant image processing. In this paper, we describe a collaborative approach in which multi-view camera geometry and inter-camera communication is utilized at run time to significantly reduce the required processing time. By doing so, we are able to achieve a high capture rate for both frontal and non-frontal faces and at the same time maintain a high detection accuracy. We implement our face acquisition system on a 1.6 GHz Intel Atom Processor based embedded camera network and show that we can reliably acquire frontal faces at 11 fps and non-frontal faces at 10 fps on images captured at a resolution of 640 by 480 pixels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.