Thrombin decreases the platelet surface expression of the glycoprotein (GP) Ib-IX complex. To determine whether this effect is reversible, flow cytometric studies were performed with GPIb-IX-specific monoclonal antibodies. In both whole blood and washed platelet systems, incubation of platelets with thrombin or a combination of adenosine diphosphate and epinephrine resulted in a maximal decrease of the platelet surface expression of GPIb-IX within 5 minutes, after which there was a time- dependent return of the platelet surface GPIb-IX complex, which was maximal by 60 minutes. Exposure of the same platelets to additional exogenous thrombin resulted in a second decrease in platelet surface GPIb-IX, followed by a second reconstitution of platelet surface GPIb- IX. Throughout these experiments there was no measurable release from the platelets of glycocalicin (a proteolytic fragment of GPIb). Experiments in which platelets were preincubated with a biotinylated GPIb-specific MoAb showed that the GPIb molecules that returned to the platelet surface were the same molecules that had been translocated to the intraplatelet pool. The GPIb molecules that returned to the platelet surface were functionally competent to bind von Willebrand factor, as determined by ristocetin-induced platelet agglutination and ristocetin-induced binding of exogenous von Willebrand factor. Inhibitors of protein kinase C and myosin light-chain kinase enhanced the reexpression of platelet surface GPIb. In summary, the activation- induced decrease in the platelet surface expression of the GPIb-IX complex is reversible. Inactivation of protein kinase C and myosin light-chain kinase are important mechanisms in the reexpression of the platelet surface GPIb-IX complex.
The effects of neutrophil cathepsin G on the glycoprotein (GP) Ib-IX complex of washed platelets were examined. Cathepsin G resulted in a concentration- and time-dependent decrease in the platelet surface GPIb- IX complex, as determined by flow cytometry, binding of exogenous von Willebrand factor (vWF) in the presence of ristocetin, and ristocetin- induced platelet agglutination. Cathepsin G resulted in proteolysis of the vWF binding site on GPIb alpha (defined by monoclonal antibody [MoAb] 6D1), as determined by increased supernatant glycocalicin fragment (a proteolytic product of GPIb alpha); decreased total platelet content of GPIb; and lack of effect of either cytochalasin B (an inhibitor of actin polymerization), prostaglandin I2 (an inhibitor of platelet activation), or prior fixation of the platelets. However, cathepsin G resulted in minimal decreases in the binding to fixed platelets of MoAbs TM60 (directed against the thrombin binding site on GPIb alpha) and WM23 (directed against the macroglycopeptide portion of GPIb alpha). In contrast to its proteolytic effect on GPIb alpha, the cathepsin G-induced decrease in platelet surface GPIX and the remnant of the GPIb-IX complex (defined by MoAbs FMC25 and AK1) was via a cytoskeletal-mediated redistribution, as determined by lack of change in the total platelet content of GPIX and the GPIb-IX complex; complete inhibition by cytochalasin B, prostaglandin I2, and prior fixation of platelets. Experiments with Serratia protease-treated and Bernard- Soulier platelets showed that neither platelet surface GPIb nor cathepsin G-induced proteolysis of GPIb were required for the cathepsin G-induced redistribution of the remnant of the GPIb-IX complex or the cathepsin G-induced increase in platelet surface P-selectin. In summary, neutrophil cathepsin G modulates the platelet surface expression of the GPIb-IX complex both by proteolysis of the vWF binding site on GPIb alpha and by a cytoskeletal-mediated redistribution of the remainder of the complex. Prior studies show that, although thrombospondin 1, antiserine proteases, and plasma are all inhibitors of cathepsin G, the effects of cathepsin G on platelets, including an increase in surface GPIIb-IIIa, occur during close contact between neutrophils and platelets in a protective microenvironment (eg, thrombosis and local inflammation).(ABSTRACT TRUNCATED AT 400 WORDS).
The effect of endothelial cell seeding on the patency of small-caliber expanded polytetrafluoroethylene (ePTFE) grafts used for venous replacements in a canine experimental model was evaluated. Grafts were implanted bilaterally In 12 dogs as femoral vein interpositions. In each animal, one graft was seeded with enzymatically derived homologous endothelial cells which had been cultivated for 3 days in vitro before implantation, whereas the contralateral graft was not seeded. In five dogs, venography was performed at 2 weeks, and grafts were then excised. In the remaining seven dogs, venography was performed at both 2 and 4 weeks, with graft excision at 4 weeks. Graft patency at 2 weeks for seeded grafts was 75% (nine of 12) compared with only 33% (four of 12) for unseeded grafts ( P < 0.02). There were no new episodes of thrombotic occlusion between 2 and 4 weeks. Five dogs with thrombus in the control graft did not develop thrombus in the contralateral seeded graft. Furthermore, each dog with a patent control graft had no thrombus in the seeded graft. It is concluded that the early patency of seeded ePTFE grafts is superior to that of unseeded ePTFE grafts in the femoral vein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.