The use of electromyography (EMG) is widely recognised as a valuable tool for enhancing the understanding of performance drivers and potential injury risk in sprinting. The timings of muscle activations relative to running gait cycle phases and the technology used to obtain muscle activation data during sprinting are of particular interest to scientists and coaches. This review examined the main muscles being analysed by surface EMG (sEMG), their activations and timing, and the technologies used to gather sEMG during sprinting. Electronic databases were searched using 'Electromyography' OR 'EMG' AND 'running' OR 'sprinting'. Based on inclusion criteria, 18 articles were selected for review. While sEMG is widely used in biomechanics, relatively few studies have used sEMG in sprinting due to system constraints. The results demonstrated a focus on the leg muscles, with over 70% of the muscles analysed in the upper leg. This is consistent with the use of tethered and data logging EMG systems and many sprints being performed on treadmills. Through the recent advances in wireless EMG technology, an increase in the studies on high velocity movements such as sprinting is expected and this should allow practitioners to perform the analysis in an ecologically valid environment.
Abstract-a method of estimating force using an accelerometer is presented. This model is based on estimating the resultant acceleration of a body at its centre of mass using a triaxial accelerometer. A data set of ground reaction forces are gathered using a force platform, which is used as the control for this experiment. Signal processing techniques for resampling the accelerometer signals, along with a method of cross correlation to align the force platform and accelerometer traces are used. The purpose of this study was to compare force calculated using accelerometer data from the SHIMMER device, with force platform data on counter movement and drop jumps, for use in sports biomechanics. The method was validated using twelve physically active adults who performed 5 counter movement jumps and 5 drop jumps from a height of 0.30 m. An accelerometer was attached near the participant's centre of mass and simultaneous force and acceleration data were obtained for the jumps.Minimum eccentric force and peak concentric force were calculated concurrently for countermovement jumps and peak landing forces were calculated concurrently for drop jumps. The results showed moderate to low levels of agreement in forces and a consistent systematic bias between the results from the force platform and accelerometer. However, good agreement between the accelerometer and force platform was observed during the eccentric phase of the countermovement jump.
This paper examines the use of sensor devices in sports biomechanics, focusing on current frequency of use of Electromyography (EMG) device preferences. Researchers in the International Society of Biomechanics in Sports (ISBS) were invited to participate in an online survey. Responses on multiple sensor devices highlighting frequency of use, device features and improvements researchers sought in acquisition and analysis methods were obtained via an online questionnaire. Results of the investigation showed that the force platform is the most frequently used device, with inertial measurement units and EMG devices growing in popularity. Wireless functionality and ease of use for both the participant and the practitioner proved to be important features. The main findings of the survey demonstrated need for a simple, low power, multi-channel device which incorporates the various sensors into one single device. Biomechanists showed they were looking for more availability of wireless sensor devices with acquisition and analysis features. The study found there is a need to develop software analysis tools to accompany the multi-channel device, providing all the basic functions while maintaining compatibility with existing systems.
In the shot put, the athlete's muscles are responsible for generating the impulses to move the athlete and project the shot into the air. Information on phasic muscle activity is lacking for the glide shot put event and therefore important technical information for coaches is not currently available. This study provides an electromyography (EMG) analysis of the muscle activity of the legs during shot put. Fifteen right-handed Irish national level shot putters performed six maximum effort throws using the glide shot put technique. EMG records of eight bilateral lower limb muscles (rectus femoris, biceps femoris, medial- and lateral-gastrocnemius) were obtained during trials. Analysis using smooth EMG linear envelopes revealed patterns of muscle activity across the phases of the throw and compare men and women performers. The results showed that the preferred leg rectus femoris, the preferred leg biceps femoris and the non-preferred leg biceps femoris play important roles in the glide technique, with the total duration of high volumes of activity between 34 and 53% of the throw cycle. A comprehensive understanding of movement and muscle activation patterns for coaches could be helpful to facilitate optimal technique throughout each of the key phases of the event.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.