The innate immune system responds to infections and tissue damage by activating cytosolic sensory complexes called inflammasomes. Cytosolic DNA is sensed by AIM2-like receptors (ALRs) during bacterial and viral infections and in autoimmune diseases. Subsequently, recruitment of the adaptor protein ASC links ALRs to the activation of caspase-1. A controlled immune response is crucial for maintaining homeostasis, but ALR inflammasome regulation is poorly understood. Here, we identified the PYRIN domain (PYD)-only protein 3 (POP3), which competes with ASC for recruitment to ALRs, as an inhibitor of DNA virus-induced ALR inflammasome activation in vivo. Using a mouse model with macrophage-specific POP3 expression, the data emphasizes the importance of ALR inflammasome regulation in the monocytic/macrophage.
To elucidate the genetic factors predisposing to AIDS progression, we analyzed a unique cohort of 275 human immunodeficiency virus (HIV) type 1-seropositive nonprogressor patients in relation to a control group of 1352 seronegative individuals in a genomewide association study (GWAS). The strongest association was obtained for HCP5 rs2395029 (P=6.79x10(-10); odds ratio, 3.47) and was possibly linked to an effect of sex. Interestingly, this single-nucleotide polymorphism (SNP) was in high linkage disequilibrium with HLA-B, MICB, TNF, and several other HLA locus SNPs and haplotypes. A meta-analysis of our genomic data combined with data from the previously conducted Euro-CHAVI (Center for HIV/AIDS Vaccine Immunology) GWAS confirmed the HCP5 signal (P=3.02x10(-19)) and identified several new associations, all of them involving HLA genes: MICB, TNF, RDBP, BAT1-5, PSORS1C1, and HLA-C. Finally, stratification by HCP5 rs2395029 genotypes emphasized an independent role for ZNRD1, also in the HLA locus, and this finding was confirmed by experimental data. The present study, the first GWAS of HIV-1 nonprogressors, underscores the potential for some HLA genes to control disease progression soon after infection.
SUMMARY In response to infections and tissue damage, ASC-containing inflammasome protein complexes are assembled that promote caspase-1 activation, IL-1β and IL-18 processing and release, pyroptosis, and the release of ASC particles. However, excessive or persistent activation of the inflammasome causes inflammatory diseases. Therefore, a well-balanced inflammasome response is crucial to maintain homeostasis. We show that the PYD-only protein POP1 inhibited ASC-dependent inflammasome assembly by preventing inflammasome nucleation, and consequently interfered with caspase-1 activation, IL-1β and IL-18 release, pyroptosis and the release of ASC particles. There is no mouse ortholog for the POP1 gene, but transgenic expression of human POP1 in monocytes, macrophages and dendritic cells protected mice from systemic inflammation triggered by molecular PAMPs, inflammasome component NLRP3 mutation and ASC danger particles. POP1 expression was regulated by TLR- and IL-1R–signalling, and we propose that POP1 provides a regulatory feedback loop that shuts down excessive inflammatory responses and thereby prevents systemic inflammation.
Inflammasomes are important for maintaining intestinal homeostasis, and dysbiosis contributes to the pathology of inflammatory bowel disease (IBD) and increases the risk for colorectal cancer. Inflammasome defects contribute to chronic intestinal inflammation and increase the susceptibility to colitis in mice. However, the inflammasome sensor absent in melanoma 2 (AIM2) protects against colorectal cancer in an inflammasome-independent manner through DNA-dependent protein kinase and Akt pathways. Yet, the roles of the AIM2 inflammasome in IBD and the early phases of colorectal cancer remain ill-defined. Here we show that the AIM2 inflammasome has a protective role in the intestine. During steady state, Aim2 deletion results in the loss of IL-18 secretion, suppression of the IL-22 binding protein (IL-22BP) in intestinal epithelial cells and consequent loss of the STAT3-dependent antimicrobial peptides (AMPs) Reg3β and Reg3γ, which promotes dysbiosis-linked colitis. During dextran sulfate sodium-induced colitis, a dysfunctional IL-18/IL-22BP pathway in Aim2−/− mice promotes excessive IL-22 production and elevated STAT3 activation. Aim2−/− mice further exhibit sustained STAT3 and Akt activation during the resolution of colitis fueled by enhanced Reg3b and Reg3g expression. This self-perpetuating mechanism promotes proliferation of intestinal crypt cells and likely contributes to the recently described increase in susceptibility of Aim2−/− mice to colorectal cancer. Collectively, our results demonstrate a central role for the AIM2 inflammasome in preventing dysbiosis and intestinal inflammation through regulation of the IL-18/IL-22BP/IL-22 and STAT3 pathway and expression of select AMPs.
Lipopolysaccharide (LPS) of Gram-negative bacteria can elicit a strong immune response. Although extracellular LPS is sensed by TLR4 at the cell surface and triggers a transcriptional response, cytosolic LPS binds and activates non-canonical inflammasome caspases, resulting in pyroptotic cell death, as well as canonical NLRP3 inflammasome-dependent cytokine release. Contrary to the highly regulated multiprotein platform required for caspase-1 activation in the canonical inflammasomes, the non-canonical mouse caspase-11 and the orthologous human caspase-4 function simultaneously as innate sensors and effectors, and their regulation is unclear. Here we show that the oxidized phospholipid 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (oxPAPC) inhibits the non-canonical inflammasome in macrophages, but not in dendritic cells. Aside from a TLR4 antagonistic role, oxPAPC binds directly to caspase-4 and caspase-11, competes with LPS binding, and consequently inhibits LPS-induced pyroptosis, IL-1β release and septic shock. Therefore, oxPAPC and its derivatives might provide a basis for therapies that target non-canonical inflammasomes during Gram-negative bacterial sepsis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.