Catalytic reactors performing continuously are an important step towards more efficient and controllable processes compared to the batch operation mode. For this purpose, homogenous high internal phase emulsion polymer materials with an immobilized silver catalyst were prepared and used as a continuous plug flow reactor. Porous material with epoxide groups was functionalized to bear aldehyde groups which were used to reduce silver ions using Tollens reagent. Investigation of various parameters revealed that the mass of deposited silver depends on the aldehyde concentration as well as the composition of Tollens reagent. Nanoparticles formed on the pore surface showed high crystallinity with a cuboctahedra crystal shape and highly uniform surface coverage. The example of the 4-nitrophenol catalytic reduction in a continuous process was studied and demonstrated to be dependent on the mass of deposited silver. Furthermore, productivity increased with the volumetric silver density and flow rate, and it was preserved during prolonged usage and storage.
The role of bacteriophage therapy in medicine has recently regained an important place. Oral phage delivery for gastrointestinal treatment, transport through the stomach, and fast release in the duodenum is one of such applications. In this work, an efficient polyHIPE/hydrogel system for targeted delivery of bacteriophages with rapid release at the target site is presented. T7 bacteriophages were encapsulated in low crosslinked anionic nanocellulose-based hydrogels, which successfully protected phages at pH < 3.9 (stomach) and completely lost the hydrogel network at a pH above 3.9 (duodenum), allowing their release. Hydrogels with entrapped phages were crosslinked within highly porous spherical polyHIPE particles with an average diameter of 24 μm. PolyHIPE scaffold protects the hydrogels from mechanical stimuli during transport, preventing the collapse of the hydrogel structure and the unwanted phage release. On the other hand, small particle size, due to the large surface-to-volume ratio, enables rapid release at the target site. As a consequence, a fast zero-order release was achieved, providing improved patient compliance and reduced frequency of drug administration. The proposed system therefore exhibits significant potential for a targeted drug delivery in medicine and pharmacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.