So far, only two interstellar objects have been observed within our Solar System. While the first one, 1I/‘Oumuamua, had asteroidal characteristics, the second one, 2I/Borisov, showed clear evidence of cometary activity. We performed polarimetric observations of comet 2I/Borisov using the European Southern Observatory Very Large Telescope to derive the physical characteristics of its coma dust particles. Here we show that the polarization of 2I/Borisov is higher than what is typically measured for Solar System comets. This feature distinguishes 2I/Borisov from dynamically evolved objects such as Jupiter-family and all short- and long-period comets in our Solar System. The only object with similar polarimetric properties as 2I/Borisov is comet C/1995 O1 (Hale-Bopp), an object that is believed to have approached the Sun only once before its apparition in 1997. Unlike Hale-Bopp and many other comets, though, comet 2I/Borisov shows a polarimetrically homogeneous coma, suggesting that it is an even more pristine object.
<p><strong>Abstract</strong></p> <p>We present detailed polarimetric analysis of pre-perihelion STEREO observations of Kreutz group comet C/2010 E6 (STEREO), focusing on the changes in polarisation with decreasing heliocentric distance in the pre-perihelion STEREO spacecraft hourly observations of the comet in March 2010. We utilise a bespoke image analysis method for the coronagraph data, finding the Stokes parameters for comet and its tail. The results show a clear variability in polarisation, which can be attributed to sublimation of refractory material.</p> <p><strong> 1. Introduction</strong></p> <p>Polarimetry is a useful tool for remote observations of comet refractory material, since it can provide constraints on its structure and composition. Near-Sun comets like C/2010 E6 (STEREO) are interesting partly for their frequency &#8211; Kreutz group comets represent the single largest comet family [1] &#8211; but mostly for the intense near-Sun environment they experience. The comet&#8217;s approach to perihelion is likely accompanied by sublimation of refractory material, therefore we can, by studying comet's changing polarimetric signature during its approach to the Sun, extract information about the composition of refractory material in cometary dust. The full analysis is presented in [2].</p> <p><strong>2. Observations</strong></p> <p>Comet C/2010 E6 (STEREO) belongs to the Kreutz family of sungrazing comets, which share very similar orbital parameters and are thought to be the remnants of a larger parent comet [1,3,4].</p> <p>The comet was imaged by the twin STEREO (Solar Terrestrial Relations Observatory) spacecraft in March 2010; A (Ahead) and B (Behind). In this work only COR2 visible light (bandpass 650-750 nm) coronagraph imagery is used [5].</p> <p>Permanently in the light path of COR2 is a linear polariser which can be set at three angles: 0&#186;, 120&#186;, and 240&#186; relative to a reference position. A sequence (triplet) of images using the three different polariser angles in quick succession is taken once per hour.</p> <p><strong> 3. Methodology </strong></p> <p>The image analysis was conducted using a bespoke semi-automated routine fine-tuned for the use with STEREO COR2 data.</p> <p>Firstly, the image triplets undergo standard pre-processing using the SECCHI_PREP routine from the SolarSoft library for IDL [6]. Then the comet head is found interactively in the image triplets.</p> <p>Orbital parameters are used to find the plane of the comet's orbit, in which the dust tail is assumed to lie; all data points in the images are then mapped onto this plane. From this, the phase angle - between the Sun, the comet, and the spacecraft &#8211; can be determined.</p> <p>Comet tail is then traced in each separate image. Its transverse cross-sections first have their background removed using a cubic fit and are then truncated (integrated) to a single point for each longitudinal step.</p> <p>The three resulting polarised intensity vectors from the image triplet are then aligned, and the polarimetric properties (Stokes parameters <em>Q</em>, <em>U</em>, and <em>I</em>) calculated. The method is similar to, but distinct from, the one used by [7,8].</p> <p><strong> 4. Results</strong></p> <p>We present two sets of plots of STEREO/SECCHI/COR2 observations of comet C/2010 E6 (STEREO): polarimetric (Figure 1) and photometric (Figure 2). All data is plotted against heliocentric distance. Since the data would contain considerable overlap otherwise, three different offsets are used to stagger the data.</p> <p>The phase angle information is lost in these plots. STEREO-A phase angle observations range between ~35&#186; and ~25&#186; (right to left). The phase angle range in STEREO-B observations is ~135&#186; to ~105&#186; (right to left). The phase angle variation along the tail is small for each observation.</p> <p><img src="data:image/png;base64, iVBORw0KGgoAAAANSUhEUgAAAfQAAAF8CAYAAAA5NUk/AAAMRmlDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnltSSWiBCEgJvQkiSJcSQosgIFWwEZJAQokhIYjYlWUVXLuIgLqiqyKKrq6ArBV1rYtg7w8LKsq6WLCh8iYFdPV7733v5Jt7/5w55z8lc29mANCp4UmluaguAHmSAll8RAhrQmoai/QQIIAOPybAkMeXS9lxcdEAyuD9n/LmKrSGcslFyfX9/H8VPYFQzgcAiYM4QyDn50H8GwB4CV8qKwCA6AP11tMLpEo8CWIDGUwQYqkSZ6lxiRJnqHGlyiYxngPxTgDINB5PlgWAdjPUswr5WZBH+zrEbhKBWAKADhniQL6IJ4A4EuIReXnTlBjaAYeMr3iy/sGZMcTJ42UNYXUtKiGHiuXSXN6M/7Md/1vychWDMezgoIlkkfHKmmHfrudMi1JiGsQ9koyYWIj1IX4nFqjsIUapIkVkktoeNeXLObBngAmxm4AXGgWxKcThktyYaI0+I1MczoUYrhC0SFzATdT4LhLKwxI0nDWyafGxgzhTxmFrfBt4MlVcpf0JRU4SW8N/XSTkDvK/LhYlpqhzxqiF4uQYiLUhZspzEqLUNphNsYgTM2gjU8Qr87eB2E8oiQhR82NTMmXh8Rp7WZ58sF5skUjMjdHgqgJRYqSGZyefp8rfCOJmoYSdNMgjlE+IHqxFIAwNU9eOtQslSZp6sU5pQUi8xvelNDdOY49ThbkRSr0VxKbywgSNLx5YABekmh+PkRbEJarzxDOyeWPj1PngRSAacEAoYAEFHBlgGsgG4raeph74TT0TDnhABrKAELhoNIMeKaoZCbwmgGLwF0RCIB/yC1HNCkEh1H8a0qqvLiBTNVuo8sgBjyDOA1EgF35XqLwkQ9GSwUOoEX8XnQ9zzYVDOfe9jg010RqNYpCXpTNoSQwjhhIjieFER9wED8T98Wh4DYbDHffBfQez/WJPeEToINwnXCF0Em5MFS+QfVMPC4wDnTBCuKbmjK9rxu0gqyceggdAfsiNM3ET4IKPhpHYeBCM7Qm1HE3myuq/5f5HDV91XWNHcaOglGGUYIrDt57aTtqeQyzKnn7dIXWuGUN95QzNfBuf81WnBfAe9a0ltgjbh53CjmFnsINYE2BhR7Bm7Dx2SImHVtFD1SoajBavyicH8oi/i8fTxFR2Uu5W79bt9lE9VyAsUr4fAWeadIZMnCUqYLHhm1/I4kr4riNY7m7ubgAo/0fUr6lXTNX/A8I8+0WXfxQA3zKozPqi41kDcOARAIw3X3TWL+HjsRyAQ+18haxQrcOVFwKgAh34RBkDc2ANHGA97sAL+INgEAbGgliQCFLBFNhlEVzPMjAdzALzQSkoB8vBGlAFNoLNYDvYBfaCJnAQHAN/gHOgHVwBt+Dq6QLPQC94A/oRBCEhdISBGCMWiC3ijLgjPkggEoZEI/FIKpKOZCESRIHMQhYi5chKpArZhNQhvyIHkGPIGaQDuYHcQ7qRl8gHFENpqAFqhtqhI1EflI1GoYnoZDQLzUeL0RJ0KVqJ1qI70Ub0GHoOvYJ2os/QPgxgWhgTs8RcMB+Mg8ViaVgmJsPmYGVYBVaLNWAt8He+hHViPdh7nIgzcBbuAldwJJ6E8/F8fA6+BK/Ct+ON+An8En4P78U/E+gEU4IzwY/AJUwgZBGmE0oJFYSthP2Ek/Bp6iK8IRKJTKI90Rs+janEbOJM4hLieuJu4lFiB/EBsY9EIhmTnEkBpFgSj1RAKiWtI+0kHSFdJHWR3pG1yBZkd3I4OY0sIS8gV5B3kA+TL5Ifk/spuhRbih8lliKgzKAso2yhtFAuULoo/VQ9qj01gJpIzabOp1ZSG6gnqbepr7S0tKy0fLXGa4m15mlVau3ROq11T+s9TZ/mROPQJtEUtKW0bbSjtBu0V3Q63Y4eTE+jF9CX0uvox+l36e+0Gdqu2lxtgfZc7WrtRu2L2s91KDq2OmydKTrFOhU6+3Qu6PToUnTtdDm6PN05utW6B3Sv6fbpMfRG6cXq5ekt0duhd0bviT5J304/TF+gX6K/Wf+4/gMGxrBmcBh8xkLGFsZJRpcB0cDegGuQbVBusMugzaDXUN9wtGGyYZFhteEhw04mxrRjcpm5zGXMvcyrzA/DzIaxhwmHLR7WMOzisLdGw42CjYRGZUa7ja4YfTBmGYcZ5xivMG4yvmOCmziZjDeZbrLB5KRJz3CD4f7D+cPLhu8dftMUNXUyjTedabrZ9Lxpn5m5WYSZ1Gyd2XGzHnOmebB5tvlq88Pm3RYMi0ALscVqiyMWT1mGLDYrl1XJOsHqtTS1jLRUWG6ybLPst7K3SrJaYLXb6o411drHOtN6tXWrda+Nhc04m1k29TY3bSm2PrYi27W2p2zf2tnbpdj9aNdk98TeyJ5rX2xfb3/bge4Q5JDvUOtw2ZHo6OOY47jesd0JdfJ0EjlVO11wRp29nMXO6507RhBG+I6QjKgdcc2F5sJ2KXSpd7nnynSNdl3g2uT6fKTNyLSRK0aeGvnZzdMt122L261R+qPGjlowqmXUS3cnd757tftlD7pHuMdcj2aPF6OdRwtHbxh93ZPhOc7zR89Wz09e3l4yrwavbm8b73TvGu9rPgY+cT5LfE77EnxDfOf6HvR97+flV+C31+9vfxf/HP8d/k/G2I8Rjtky5kGAVQAvYFNAZyArMD3w58DOIMsgXlBt0P1g62BB8Nbgx2xHdjZ7J/t5iFuILGR/yFuOH2c252goFhoRWhbaFqYflhRWFXY33Co8K7w+vDfCM2JmxNFIQmRU5IrIa1wzLp9bx+0d6z129tgTUbSohKiqqPvRTtGy6JZx6Lix41aNux1jGyOJaYoFsdzYVbF34uzj8uN+H08cHze+evyj+FHxs+JPJTASpibsSHiTGJK4LPFWkkOSIqk1WSd5UnJd8tuU0JSVKZ0TRk6YPeFcqkmqOLU5jZSWnLY1rW9i2MQ1E7smeU4qnXR1sv3koslnpphMyZ1yaKrOVN7UfemE9JT0HekfebG8Wl5fBjejJqOXz+Gv5T8TBAtWC7qFAcKVwseZAZkrM59kBWStyuoWBYkqRD1ijrhK/CI7Mntj9tuc2JxtOQO5Kbm788h56XkHJPqSHMmJaebTiqZ1SJ2lpdLOfL/8Nfm9sijZVjkinyxvLjCAG/bzCgfFD4p7hYGF1YXvpidP31ekVyQpOj/DacbiGY+Lw4t/mYnP5M9snWU5a/6se7PZszfNQeZkzGmdaz23ZG7XvIh52+dT5+fM/3OB24KVC14vTFnYUmJWMq/kwQ8RP9SXapfKSq/96P/jxkX4IvGitsUei9ct/lwmKDtb7lZeUf5xCX/J2Z9G/VT508DSzKVty7yWbVhOXC5ZfnVF0IrtK/VWFq98sGrcqsbVrNVlq1+vmbrmTMXoio1rqWsVazsroyub19msW77uY5Wo6kp1SPXuGtOaxTVv1wvWX9wQvKFho9nG8o0ffhb/fH1TxKbGWrvais3EzYWbH21J3nLqF59f6raabC3f+mmbZFvn9vjtJ+q86+p2mO5YVo/WK+q7d07a2b4rdFdzg0vDpt3M3eV7wB7Fnqe/pv96dW/U3tZ9PvsafrP9rWY/Y39ZI9I4o7G3SdTU2Zza3HFg7IHWFv+W/b+7/r7toOXB6kOGh5Ydph4uOTxwpPhI31Hp0Z5jWccetE5tvXV8wvHLJ8afaDsZdfL0H+F/HD/FPnXkdMDpg2f8zhw463O26ZzXucbznuf3/+n55/42r7bGC94Xmtt921s6xnQcvhh08dil0Et/XOZePncl5krH1aSr169NutZ5XXD9yY3cGy9uFt7svzXvNuF22R3dOxV3Te/W/svxX7s7vToP3Qu9d/5+wv1bD/gPnj2UP/zYVfKI/qjiscXjuifuTw52h3e3P534tOuZ9Fl/T+lfen/VPHd4/tvfwX+f753Q2/VC9mLg5ZJXxq+2vR79urUvru/um7w3/W/L3hm/2/7e5/2pDykfHvdP/0j6WPnJ8VPL56jPtwfyBgakPBlPtRXA4EAzMwF4uQ0AeircO7QDQJ2oPuepBFGfTVUI/CesPguqxAuAbcEAJM0DIBruUTbAYQsxDd6VW/XEYIB6eAwNjcgzPdzVXDR44iG8Gxh4ZQYAqQWAT7KBgf71AwOftsBkbwBwNF99vlQKEZ4NfnZVovau5+Bb+TcFwn9RUvatxQAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAAgVpVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9IlhNUCBDb3JlIDUuNC4wIj4KICAgPHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4KICAgICAgPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIKICAgICAgICAgICAgeG1sbnM6ZXhpZj0iaHR0cDovL25zLmFkb2JlLmNvbS9leGlmLzEuMC8iCiAgICAgICAgICAgIHhtbG5zOnRpZmY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vdGlmZi8xLjAvIj4KICAgICAgICAgPGV4aWY6UGl4ZWxZRGltZW5zaW9uPjc2MDwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlBpeGVsWERpbWVuc2lvbj4xMDAwPC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPHRpZmY6T3JpZW50YXRpb24+MTwvdGlmZjpPcmllbnRhdGlvbj4KICAgICAgPC9yZGY6RGVzY3JpcHRpb24+CiAgIDwvcmRmOlJERj4KPC94OnhtcG1ldGE+CnJvzCcAAEAASURBVHgB7F0HgFXF1T73boWlLb2zSxVQOlJUmg1RAU3sBewlvzGxxJjEgr0ksSVGjQ17JYpibyDYQHrvvSxt6cuy797/++a+2b379r5995Ut4ht4e9vMmTNnyplz5swZw0aQZEhSIEmBhFOAXcswDAVX3+vupt/Hk6mGWdUwdP62YCjBf5ZNl5PfQsuq8dZx9PdI73U+yWuSAkkKeFPA9H6dfJukQJIC8VCAzI2MKhAIiGVZxUyN7zQDI3wyMc3YysuPMA4dOqRg6XhuOPqdjqef9dUrD81AiWNhYaGOWubqTst4zIPB/Z7PKJkqG+PocmocGVfH57uioqLiOIzPsvE9cdFpeX/w4EH1zDx1euaVDEkKJClQlgIpdyKUfZ18k6RAkgKxUoCMh0xpy5Yt8s4778i8efOkdevWimlOnjxZ9uzZI82aNVOM0TRNFZdpyLzIxFJTU0tlvXbtWpk1a5bs3r1bateureIf2H9Ali5bKllZWZKenq7iM+1bb70ltmVLo8aNFHzNKJlPQUGBikdmqvPdsWOHTJo0SZYtWybNmzeXzMxMh2FDsVB0qEgxXo3PkiVL5OOPP5aOHTsq5sr3mummpaXJgQMH5KOPPpLvvvtOSep5eXmya9cuWbhwoWzdulW9P+KII2Tp0qXy8ssvS/369WXF8hXy+eefK3yYH9+npKSock6cOFH27dsnNWrUkNdff10ILzc3V8UtRaDkQ5ICSQooCiQZerIhJCmQYAqQmZNBv/jii3L00Ucr5jR79mzFiL799lvF2Lt16yZz5sxRjG7jxo0yZcoU+fHHH6VRo0aSnZ2tGKJlW/LZZ5/JpA8nKWZZq1YtWblypWKMZOL/+te/pGXLlurHIhAO82zatKl8//33sn37dvniiy9k546dsm37Nnn//feFTHn69OkKB04yFixYoJjlaaeeJvv371fw9+7dq5ju1G+nKjgNGzVUOE2YMEHF4WRi4gcTJSMjQ1iedevWSadOnWTq1Kkqz9GjRyuKPvvfZ2X9hvUyePBgqVOnjnz55ZfSpUsXVSYydk50lq9YriYNKv20qZKbkyurVq1StCF9evfqrSYEnMhs2LBB6tWrJw0aNFD0JZ2TIUmBJAVKKJBUuZfQInmXpEDCKBAoCkh+fr5itm3btlWMe/369XLUUUcV50HmRCl0xowZ0qJFCyVB79y5s1hCztuSJ2vWrJGRo0aqNGTmVD1TRb1v/z7p37+/YqRaBU6mN2TIECXhc1JABtinTx/ZvmO7fP3119KzZ0+VnlIupWSGrl27yqWXXipff/O1fPXVVwpPStNkpjWzagoZ79w5c1VcMltK8Zs2b5KTTz5ZMWYyX05aGLZt26Y0EZrp7t23V+GaXS9bTVQaN26sJHpK9cSBDJmaAjJoTg72H9gvbXLaSFp6msKvf7/+Mn3GdEUf0pBwtZZBZZj8k6RAkgKlKJCU0EuRI/mQpED8FKB0TrUxmRQlbErEVLFTqs7JyVGq886dOysGRcm9Xbt20qFDB8VEyZyppibzqlu3rpJgyVwpufOZTHH16tWKETIuVdJURVMq5/OmTZukfnZ9JVG3atVK5d+wYUOVB+MQL8IgjsyTTJjqdkrlZO6cQHDiQJwYj5I1GTAZKjUAxItpf/rpJ+nevbt6pgqeZeUkguUlkyc85k84M2fOVMsAlPA5oaEK/d1335Xu3bpLalqqwp/0IZ7vTnhX0YhSPWnD/DhxoVqe5TvuuONUXqylpIQef1tNQji8KGCgcyat3A+vOk2WphpRgFIy1dxkWFSZN2veTAoPFkrNmjUVlmTIZPSUPMlcKQHznt+5Ls31dkrtZHaUZrlOvSt/l7Rs1VLFo5qcDJKwaWFecLBAMW12a6bXamqupes1b175zAkC1+UZh+vZlJSpVWA+xIlxCJewyEz1e671E1eWiZqI9Ix09Y0F4mSEqv4mTZqod1yTZx5cH6dWgQyaZePkgOkPFR6SLXlbVBk4aVETEuDCONRoMH+mYXzaCxDnZEhSIEkBbwokGbo3XZJvkxSImwJkhPFIkX7TMx6ZLwPzIyOnFE9Gfcwxx8gnn3yiGDAlaTJsrtcPHDhQTRY4eRgwYIAy4Pv555/lyCOPVOvYn3z6iVLnc82bSwJkrlwWOHXEqUqqZl7PPvus9OvXT0ndxIEhnvIqAME/7rK7791xkvdJCiQpUJoCyTX00vRIPiUpkDAKkLmRGWlmp6/uDNzv3PeMo5ljqffgm/pZXykBU9X99ttvKyv3KZOnKGM3SscMXC+nVE3pnyprqtF79+6t1OKcCGhJnur4pUuWyloYua0DA6fEvnjxYsXsr7jiCjVBmDN3jsqfavnly5crdTpV8sQ1tLwqc/whnvrnfue+12XRVzcs971Ok7wmKZCkQFkKJBl6WZok3yQpkDAKaEZHgLwPDe537nt3vFLvAUI/6yuN4WhpTkmaxm878ncoNXcO1usZzj//fLUGP378eMXYycCpPmd6pqXKnoHb7Kg+T8O6dk28o4pbb1kjo9WMn5btNKCjWpzr+9xWx8A4hKnxUi/xR79zvw+918/6yrS818/uew03eU1SIEmB0hQoveG19Ldyn3TnLTdS8mOSAkkKVCgF2A/JnPv27asszJkZmbBpmGpdnM+LFi1Shmc9e/VUBmU0hqMRG7e8UQInQ6bB3LHHHiubN29WPz7TKI0qda7jP/nkk8rAjdbt3MfO/esjR45Uablmngur9WRIUiBJgaqlQFxr6G6m7r6v2iIlc09S4NdHARqtMZC50zCNTJcqcwauk9N4jsZl/E4VOdXrjENrdE4AKG1rKZjfqaLnj+p5vqdan/dMz77O/AiDQcNTD8k/SQokKVBlFPDN0Ln3lT9aneoZOre10OqWlrq0wmVgZ2fQqjL1EOOfRE4SkrCiq4RqT69gO0NDi65grtjVvowuXP3eusvEewZ3X3R/94TJJGFIGgov9NkTXpiXEfEIk87rdXWEFQ9tQsuYhBVKkfKfq2N7IMaVgVdEhq6R4F7VN998U2699Va1TkcXluedd54yuJk3f55cMvaSYo9VnL3rRlg+6cv/qqWBJKzy6aS/Vkt6gTlQ/cs6jLcetQRpUxoNSoc2pEnFgBzepUkR8aph0Rsbt3vFEyoEVlDiTgheCYBFPNi+tCaguuBVTPsElLG6wiLdGRJB++oMKxFjBOlULcfBBOOltWMsrztEXENnI2fIyclRVrJU53FLzOWXX678NnMrzPCTh8vcuXMVQ+d+Ua7Z0dAmngbIfKnyI+JUCcbDDDQstbYY7BxuIkRzr2HRQEjTJpr07rhMT3WoNlJyf4vlnvTi/uF48WLeiYeVEY8wrcjBNkAtEdd/sTlb4FJMpDb3X0fPkUvBioXYrjSJhMU+Q8tzVUZXHtHewpxMAnZA7fOOFxbz1nhlZmRi/hM9vTX+bJvU8FFNz7YaTyAs0or0JyxeYw2/FljsPwzp6Dvx1iN9CHAyzfErXtoTL9ZBImAljG+gcAcLDyr+k2KmxEcvFyw9qYq1rbIvkr/26NFD0csNJyJDZ0WR0FSrc/sL19w4QNAdJA1nuK+VziByc3MVXBrVUP2egwmA3hvrztDPPfNkxdLDFB1UMB8OArEGTgq4x7Zli5aSXT9bDSbxwKI1MctHz1gcmGINrFh63CLt4oVFHH784Ufl0YtrpbHixbpm2h9++EF5EuMSS6wTM8JiR501c5by4R3PoEtasaPOxCElXbp0ldQHHxLp11eMAf1FggOL33ogLC4V0eiL3tHiGUTYtri+zANI6AWNz7EObkzL/rRs6TLp3KNzzHBIh2JY0KzRfWs8gbBo+MZtavQOF0/gpHrzps2yZu0aBStWWnFOQRex9EpHIYP75WNt8ywP8aKgoj3mxTzeuPCiMSHbV8ywgniR7uxHLGO8sBYvWqz8CNAwMtbxWdOLghv7dPv27RV+7O+xBNKe/Yd8JV5Y7NvkG+RBPKsgHnoRFsd6OkDiLx5YpA3xovdEOlCKFxZ3l7Ctkm9oHq3qxW8FkKGzEXBwHzxosEyeMlnOPPNMdVrSipUr1L5WwmIFk5iJ8OhEOPyRQcUbFCwcMkHDnngDK4Q/bvmJNxCvRMFqgPIRFplwvEHjpbc0xQqPDbd+g/oKL3bceAIH7IYw9GrcpLGk3HsPRnTAi1HK42BGWtEOhB03nkCpdWvDrQpWPHCYlpOL/J35xQZt8cAjvXds36H6UDxwmJYDEicbbBfxBrYJ+m3XRnvxwCM+pBkHtngDYXHvfiLGG7YtMqhEwCJebK+JgMVT+DhBS8T4rMqYnpEQWGwLHGsSgRdh8UChRNCLtG/UsFHiYKFdJAKvcDAirqFH20l4ghI7F7fEuGcOoXAizcw5gHASwc4aj2THfAmLEjolYbq4jJR3KK7uZ4XX3n2SkZmRkKUAzrI4iHDwjQcv4khY7BTxwGL5iAdh0fKZnT9WvAiLUjVpT0cmHODigcXJJNsE90eTCSsFawxqVuLFyQEtv4thxQCHNCcsMigunRBWPMENi5OyWGml8SIDplaNB7QYJqSnGDXSxIsMhXVZKwt4xQooSC+qailxZtXKiruMxIl1ybYaL70IywpAnVmzRuywQGPSmlsBtYQeL15sW4TBvh0vLGqmWJ8ccxIBi/YxHAsTAStReHG84USd0nC8eHEcJP+JlwexT3K8IRw/GkHSIjSwLFxK43+eD0FtRswSOoErgMjIi0h8x0GWiOjvHOi8ECOT8HofWgD3AOknfmh6jTOvxMUdYoVHGByIdIgHDmG4pel4Ybk1BvHAYtpEwWIZ3aq9ePBi+yrGi42bjZ6/GALbYDEspI8HL06g3PUYAzrFSdywYsVJ9z8C1X1QDwTFGUV5w0GIPwYFK8r07uhUlfPHEGsZNTxOEnWoDrD0ZIeTT/cSQDy4aY9/LGc8cJjerXE7XGGxzbv7QDzldPfreOCQ9tHwM7YdtiGvPNW7MMNeVDpQDVxfiaQOmoAkJs91pu9nDuShcYko1xqpFmGa0O8aXqKuGn5OTo6axROufpeoPJJwwlOADIpLNbwmNMTIyBOKQzUFpts3B2+ekqafqym6hyVa1ATWruUsySXpX7lVHPVYDz6kQjUaU7irjLZpXuMm+SZt1Tp17FSGsAlTuXM2QQmKKndKP23atAlrKMGZip7tl8Eo+SJJgV8zBShdwAWrgbU26Od+zZRIlj1JgV8tBbi0qC3/Q4nACSL57JFdj5R62c5xxnrSmDCxSQPklXp9Mm23iiEUqcp+rgxtQGWX6ZeSX5L2PmqKUgL6jr11q1hjLhPzmf+I0TbX2ZIXh+SQpL0P2iej/HopgAm09fHHYrTvIEZn7AYJ9sOqJkgk/qnsKTxsWeIz7/UoNQcQvXbE++oS9ISjuuDza8IjSXsftR1k2gasas3nnxGjRXMnURzMnACStPdB+4RGwZhXjca9hBbtcAKm6wiaZRwtKLJv7y+qdLblzVsTJqFranAAofqdzNxrDZ3xqJKnej4ZkhRIUiCEAjA8M7B/Nhl+qRSAtZI2WCLTiHNC9kulQrXHm/UC6Rxrv2Jee00JutWkvrRRXAliJXeKx9LDpUdIGEPXqj0/RnHdunWrNKM4jzJXq1fYRSKcbGXVrFZoxYUM28Kewj2SlZ4lKYZzgEdcAKtD4j2YwWN7DgeACg8JYgSwP4UDHRsW+JrDVDjmcWXAdrO3cC/aTS24C66mOO/bD4kEwgi2fZUKwTqz4fjI/vobMa/7v8ppKy4k9u6DQ65UA9tDXS+rwe2eg3ukRhq205rO1twq1RrBUNvm1j38s267XYwxF4nRqxddIdJnbDWgloMCjeLoddVtFKd5LK886tjLYVTCGLqmBKVvepOilx73diX9nVe9daJKK9aNUBXeHzrEJQoy9Go6gMVAG27dOXCoQGqmYZZSVcXCPmclHSWIAdvYC2zQkU2C4JVL1gQxM45RQBsMvdzcSj4maCJRAjC6O7abg0UH1USw6hpOBJzhChSjbFmGrpPRFwH2B9OwkUyiMrUtB1HXRqYNhl5VnU4TofS1oKhAMlIwywC/rPIxn22ckzI4uzLOOVuM5olZ2ipd4vifcnJypEWLFopeZODuQBrS1bpe2nZ/SxhD1xXFK/fuce+ke/+kO9PkfQkFMjO5b7/k+XC44+y3tpKyqm7Gaz3yGAbWdmL+5szYDV1U598nFHkM+oxP9Na70Mpmfgli5gSNuTUMU6MY3BOYd2jR/Dyz3dRMxzGuVTYL9IEltgJ6SnJB2hk424I/63/vif3TdEm5756E1ml5GNaEUFDRTbS8/MN9y0rDrqbUNNl1YJds3r1ZOjTuoA5sChe/Qt+jUxh14S0UO0iMgQNKsqritl+CiHMXiX9mwEOfV0j4iMvZROiMwivjX+M7jtf8Mejr/v30ynZ4cXRKWvkF+RKwYvdz71Ap9r/GyNPF6NvHARBrZ4V4G7j+BgzMP4mNbSTYRxI7Qn5SxopnGNhcIty922fbot0LD7yBSrKqAtvN7oO7xcK/ahvYDrhOFhp05w52bPPEEyTl5hsrjZkTnV2oazi7q1ZBjwVshZvzN8kfP7lB8vbmKRyrhE+wU+TvcgZgXWfVimL+kCFdvULCGToldK6j0zCO++jcP+3ykd9+jYHjtR6z9ZWz6l/KGqffOqOElV0jG0uNVbd+zi0oSt2pZ05+kXfHg2Ru3nC9GEd0hoQOJyEVuC/cxgEvsnWbO/e47ymt1a0bQUIHfTg02HnYLnfeRWJj7U6FeOgWI+YcO+pl1INmNvywRGx55G24AS3GrP0n4/oF3MyWCbpz647NeHAuU9FBV9OPP1nyxL8DxcoD/b6i848En2NB/Rr1wQ8CgjP2JBX/vln0TaRkFfednQJ7t9VArOus4nKLGTJ5KHknl63dPFS/81K3M7OEqdw529LMnJ7iNmzY4GnlXhQokm5HdVOHPOg0MZf6F5KQnYtt59upllKDDhzA88Gdd/sgoYMk1W7dKx7ScrDdcWC7NM5qIiYNiKoq0DiBeudYA4xkDJyWxWDDa5PBQ4ISodPUoy0bBSe3yMeeOk2s73+QlDtuS0wewFkJI/k2Tiv0ZupOGwwquBtki/nYP0RatFTlLZ55Ok+V8pfjwc6CnWg3OHwnjDElseU4w8D4nIxUpgGdvXuPGHRbW7euI+UREeID7Yb17gQx+h0tBjxhKuLDd7cyYKgEY6sWzQ3p25s+94lQ9QmsIWrrambUlAmzJshvOpwpJx91skJQ12OlYotOYePkQLV2Xgn1EmvZ/HiK8zKKqxBPcTR600ZxXpVG/8s0nvu1BGfgFJn4oYVziAXnx5cwdHZAfq9A4a/SycxOTOOm9JT0yl8rCxLb3pIn9sMPi3HDH53OqyshWmowHQPV7WTmsbZbctciTDBoKa+DZuZ0JvPX28Skxe0xxzgNIsi0dNRYrgTP9hXO6plFY7G++AqSXYohp5zkTL50kROAQlRos90UFhVKeirWN/HPHfiN73YX7JYZK2dIn9w+UqdG/CcnuvPwdU+CkTDaODLYrqw33xLr3HPEuPFmSfn7Q2J/9bVYxw8TExbvxpDBCavT8nBkfROdWJtoebDj+caxIC0lTWgcx7pNNWDtHqzPeODGlFYRCSkpaFRVQ/eBOA8KopTuxT/5jsendurUqczhLAkTn3TGvPLkI54qQ283vA/9/ZqYOetOD4wjTzPlpBNLk5zr57t2BZmGj4r+JUSh5LRt37aqXUPHiVkyaJAYNGKKJ7Dy8LNxDGlMC5TBQcP65FOxHnxQmZ3bOIedEw6tH7Xfe19kAzQAQW1APOi603IOsX2Hd9viUvCrrwfkzPOK5LQRNgZapoQ6O0BNW0mbdcOr6Hu2m+37t6vlOgcbDvtB/IOXNdvXyEMzHlZS37LNy+SHFT+UxKloBAHfxtnrOPLPyYl1G+zc5umnSQpO+TJ/+xux584T674HxHgYGo/OnSsBKyeLLVtgj4OtawzBZud8qMK/rD/W6YFDByQzDadKgpkzhE7YKg1FaO2stzD5+vEnp+6C9Vdp+fvMiEJvOP5Jgdm9nc0NsjR3cX+J8V6pwapLa4qxDIlOpsmxaZMtl19TBMf6zqDJfOrUwRpT/dLSSKLzr2x4PFKxae2mkpqSsBUdX0Xg4KFWV0lwrHmbMIzDFNZJG2fHNXCONPZbRsaDeWtRiffMF0zAHnevCI300FHtd/8nsmKF2AsWCDaUinn2WZLyynjBQckJwVUjSSGycaOStqXbIZd5fn9jkVx0gS0Nscx79XUiq1ZDq1JgKEl9ByYBO3YGGYMGVglXtpvGtaBuD9pecNDXA7++/rzmZ1m0dYl8u+xbWbFjhfy8bmalMnQjGwSrE9QM6DaF+rahCjF69BCcRCTWcy+IcelYMW+EdqhJY4e76rgVSMdGqGu9q6ESsvNVEvKD5nWay7wN8+Qv7/9Vtu3fJos3L5YCbGutksBOwf65Y4fYOFrY+nCSqH3DVYJM4jNNOENnx9NnFPMcX96H/n6tRnHscBefjyNAXZrC3XuwbhgcPBNfvVUDkUZLeXvyoGGGiFiJgW2PTEFrixIppnDdTW3qLq885IEcSbk2xyt/1HlDS2X+5wll9GYvWSLGyNNE2rQW+/0PxJo5S6xJH4mdDwtzBs11nafY/wIX7kHfts1hzASkB/maNQy54BxT3n7XkCcfS5FbbkgRLA3LjJmWrFhpy23jAvLkU5ZSSKAElRbYbrYqzY7Tbqhe37p3q8OwgciO/TskMz1Tnjj5UbnwmwuVgdXvhlxbrhFdopFX9bQHxGII1pUN5mBdcZVY304V+5FHRB5/xPELToKTeWjCO6kq7G8+NH3UymzdCsdOGFcYEtWcYkGazJz98ftV38uLM16Us3r+VvL375KbPrmp6izdsexljjhFzFOGK6YuK1dVLZHCEJbGcKF8Uz/TMI7qeK+QMBGKlceBlIP4zJkzJS8vT1nnFQ+uyF19ByKVeXyqV6Er8x07FPszpZ6fpttK5c4xnvXBJdk6tQ+/fejsxI1qNVKeoSqD1pTMycy5z3XWmlnSvkl7aZndEoSPI/dgxVlffy2yfAXWty8uWTcNBcu4DKxoGEfZy5aL5LRRlvHW5MkwnvhA5LRTxf74U7HHjhFpkisyBk4tcnPFhipeHcKSYAOdl14NSKOGIqcMT1GDOlFTaOLK+2FDS+by9IVC5n/sMc42wyP6GrIY2qQRwy3p1bPE3sMpZMX95fjQoCYcfgSt3CcvmSzfrv5W7ht5vzJ8e+Krf8nMzTPllbEvy/uH3pcT3zpRlv/fcmnXsB3K5ow/FYedA1kZRpKADMGrAQM58957qA4R6dJFpFUrsZ9/QYwHOzkW8cG25CRK/F8Nnt5Av//ekvGvWnLdNab07uXguXcf0IByKcFNLGJBWJ+rt6+Wd2a+K32a95HerXurHQovnf2S1K0Bo0IEN3+ICDCeCEEi2XlbxJ4+XcwTTxSjf3/1iwdsRaVduXKl8hTHU0nZtkPDJhjpdumMthYSYmLoOgNWhr7XcKnb79u3rzo+NZynOL2GXmmVqZGrwuteeA6dhs7GnSx/vcuS++8wpU8fU0nnnMQ3bhwcJKoQx0RlTUlr456N0qx2M2UYlyi4YeGwvYN8efvy5LxPL5Txxz+vGLrTD/AR7TRW6hoNGgoPQuC2LqM+1PfuLUvFI2mww7E/rF0n1quvKZW/QfUevD1J4ybKUskcd7vYw4ZiEDlarH8+JvbK1c6s7pSTxcBxw4rjAkY8QaNUD+PlXQ/ZkptryRGdHObtBVqPFRecZ0oXHDZVGxPMrl0xMceks0EDBxevdPHgGC4tNXc7DuxQavd1O9dJLiY+NH5LhcX7IeuQHNHkCDm791lSO7W2jOgxQqbXny71MQFQIT6yhUOpzHtlSwHLVoNLOZrYqGejQ/uSuFhPt5s3K+GglURAalfe+8CS311pChVKM2dZaknv748E5MY/pEiH9o7wUEnoKM3Kaz++pqTxgi0F8s2Sb2RIpyEldVZCscq7gzRlv/amBCZ+KCac/qjtqJSsqplVcnt4G2zbtq0nXcg3KTR7+flImJW7niHPnz9fWd7RbV0ylFBA9/05cy357SUBOfFYQx55KFVZpJKhsz3pOCWpfpl3bAuFgUJl2Uppnc9aik7EJE5PIvWEklc6I/nHZ/8QMy1FhnUYKj1a9gATd95zX7NunzFTlB472PFpQuy2dEblWU8/IxBlYdi2QeyXXoXjEYi7MxfCq0uB2IWbxXzlVTHOPKPYQM/Gdibr0cfFPPu3QnUtxWMTBnyqARDBOEZc3YbysV3tuRcD8tszU6DdN4QOjGg01RDLPiwK7bpatwKFIjBCDS9muvlIqOvmkH1INu/aLAcDB2XMG2Plu/xpMuuiWdKjdY9S9afic4oWxF2n95FV7FE0IcgQQDSDbYHvdNDf+ewmqvu9jpvgq86ioMBWzRNzTxl5TpF0yDXkuqtNrPrY0qe3qfxd6LgJRqEMON3fdx7Adj4DbW/nZmmQ1UCa1GmipHT2Tb9jgbt+3fdlMo30goVHf7Xh78GGlbjRpbNYd4GpX47jirHdUC2PVLYaIxLOYb7PmDFD2rVrV8bKHa0yisD2i060atUqrNNsle7dusMXxlalGujduzcaE9V7WDf5hRAlipLHHVX38e7dTJnxlalO7OOYwIH1ENTvcC1cahyIO8MqBMCOSuOXhrUaSoYBt6l45r9EBfdAoO/JtEd2GynLty6XXq/0kgVjF2JCkSrvzXpfrh16jdD9ZFyBjJe6aRpEPfNfsblmgkMdjBXLxaSjCnV4C/SaYNLY+C3SsIFzxdKTPAWGTzeTubkKBQNSfsqtt6gKL0UV3UjiQFSDqFfPgK1PCnw+24qhf/aFLWeMErn4MpGNWyw5cYgJqS3yFicNLw6UIiZlHXL/+ZNfPik/b5qJfd6GnNb2VBmXe6f8sPZHadmwpTSsifWDYNB1Hu5Zv0/oVRMiPx/4YfbNfej6HTNy37szDvfeHSfOe51F/i64XIY/m2ZQCA3qlyqnnmIIFEYYY2wZMthpaTpunFlGTK77O20exk0aJ2OOHqOYORNykh9NYH0XWlg3hnOamqk+DFPDAWfh//moGB07iDFqpIqV8qebsAQGgjH8gvgWacJJU2iIjqGDHmTYb7zxBlTH9dUM4asvv8JWib3KjL4XBjiqzfbAaITfqXIP7XyhCPyanvXsODXVlk8+E3niP5ly8gmGDBl0UHU6VT+lRviKoQ41wcSFa/mJ7uB6Zp5pZMpjnz8up3QZrjryV4u+lhFHniK1MmpJ4SHs5UUI2M6arZ9Sst2lp2FfO/aPkmmzneVm52I7cJoyELEMS1plt5JWdVvJU32eks8WfCZfLf1KPvhmojSu0VjO6Xu2ilfcHkkAEoISN0XWcoKBvFLfmSBFaOuZo0dKAa3RL7pQkFIgi4tx/EmwVt8mMn+myJVXi3n3OEclS8c29Bj2t79iMlCzZLsT8yLhiQN/+tm58/dXpyUcMhheqTkIBn4+FXY/aRhQp0615eNPD8n5FxfIS88xQpr84Roeb+x4MU10G9A4+LmyXmnVvnPPTlm6ean8b9ME1IfInwfeIj1zesrkRZPlhndukHHDx0nreq3lQCFOyvKLMONp+vpBprw4hIMZuIn6tDDwG2gzmRBsAj/8KPaxx2AC11AKqXovD0YFfmNR62LHjAFpuAD0G3sRtDGYA/UC/zt4MBVt38QEj8ZUlYchmTr3nh/f5nhJt9PlwP4DSk3su/5AL7YPLuO+9sNrMm/LfLnn9LvxMnZC2kOHiFELE3M6/WGd8qhi9G/433b6UOygKzUlDc71pMmdcdQqdxJ4OxZo6A2OQJvjtJra2CLERfyRI0fKz9iLuXjxYmnZsmWSoZPSbDSuAci2DfCQQ7JoUSN5+pWjpG0rS84/a6bUz96DdkUW4UwUmUyHEBBucDqKryvhcBI6d56lXILm5tBNbyn0fMEJF4koYzxRTHbC0gny2KLHpEOtjrKsYKmckjtCuuNfRiBdOrfqrAbxejXrqQ5LeEo1j57KRso2xsC1eHZ+/iMzn7J2ivyw+keZYcyQq9pfKd1qd5NXZr8qp3QeLrO2zJbpe6bLnd3vkCa1m8isvFmys2indK/THYOIhT2wLocugG9z8IWPdmPefLEuvEAMMvZQQuM5gHh1vvpKcu+6S7bdfrt0emeiLGrVXDIG9JP6WFufifVwE76hjRqZKjkHfSMjyGBZCNY9VTFk7opAfImgyohvsYyvTEt8cQASubKFvohZkpgD+iu4/JyWZsmmTVly3i3dRdbWlGv+bwscxyxAdAuGq+0kIz0f/RYObSzgGwsOTikS8pf1XasGGCUmZfO2zpMG6Q2kfjqM44DY0ryl8tT6Z+S3zc+UrINZ0rVV18gSHgnAhs6BWl/jKaRDUJH166XhhPdkZ6uWkgaBpfd/X5GCMefIfrjLPdi4sSz9zRmSmsgO5YO6RI1FKyqy5cuv02EIGYCxVBFUsaZs3gKnQV8exPfWsnRlppz7m+WSm5OmyBIPOXygpaKwXunxby/+1TBqYGyIvqERBg924XX3/t1SMzPGw3uQ3kZbSEHBM6BlOUBXziQC2wivPgkCMH6j+iVT1PFICx6fevrpp0NhWEfRRk+SiiV0RnIHHcH9jveMlw+C0Iq9A/Zcbt68GZaV38uIESNUVEpMQ4cOVYw+NG3yuYQCQ4aIXHAhZp/w0JWZOUCNzyVfK/Zu5mwL9QPNwJCKMZL5YuEX8tjUx+Tra7+WZ6c8K9e0uEZaNWkpZ713lvTNPlqW7lgKhiTy98F/V3tU/ZT2RzDy26bdhn3cIi8OflE6N+ksCzctlA+yPpbOqUfIpIMfyRu/fU0Gth2oTnQ64/nfyFPDnpTh3SCmhgs1MVOnuu2EE5yBP1w8np5VZEmjjEwxXnlejoSbVuO8c5X6/aSqMqahhDFvnsjRWPvbma/W4o1hw0qVgGdQfJxtwbjNlo4dmmISh6WAaho+nPOh8iJ21cCrSmGYuSJTLmt2iXRs1lFmrZ4lg48fLOkGJkyRwsKFYj3zrJh33oH9/VCPJyJgB4PMmiPWPx4WE9oawdprJpZX6lG6g3YklyJxFQVqW5avsuT/xtnywXOmDBxoyJq1IgsWWXLS8Ya8+Q68VGa0lWHDMNGp5FBkFakJvJdE6QeV/AP5Mn/dfDmx7YlSIx6VOzMjn+PkmpPsX3Cg4Oy1da24VOEYeGiZuT5OaWrAgAHqgPUdWFvs1q2bUr8zLuHofeahkwQNy29eOv4v+qqlBFch9NyJKrIPJwW40wlnyBuYPRsyb75jqZrTxpDzsVeYE36emNW2rQmNCGarWF+Mxj26ewIKgRJ1B1XsKSL3/z2AZd0UZdXsQi3mW61qpxp9z8E98sbwN2Rw+8HSrXl3uOisLRu2b5AZl8yQlg1ayt8++ps8O+1Z6Va/mwzuOgTeyQJyTPtjIMA6EjrXy3j4wJy1c6ULpPkpC6fI6a+eLu+c+w4ky0ww8gWyCUY209f8JA/0uEf25O+W986YIL3a9FL4c+vkA/3uUzDLLVDfPo6zF69IrCS0ZR6awrOtjQvOV45ljNwcVlbJBEBXphuGz9m+O4nve40XuLX15NOOeh/rgYZb3Q5gqGal5T8aW9C046JQVCsSTb/l4RjB8SArHZMrIM2dCjzMI9WEe1B8G9BugKzZuUYenfyYPDL6n4qZ6zSeeWj6YGeBce7ZqDNoMRiC752HKP/qtLBsD7RuJfIAXLtCza7W0mEEYy9fLtKxk6J5cT5oPs6LKPOKITrRgxwlvxltyNBBWENv5gD5+JMATDls6Yf19B49TCWMxgA+riSsK/oWyK5RTzJTocUK9nE/QHU978Le9XfmvSMdmnWQGrVrqHYRNQ/RdXiw0Jn8NsPktjp0gDCEYNnDBZadPNaLBkrlvh+z/YULMKNFJP6oQu/StYtngnCZMB2ZPa3cGzRogEYVbFXhEhzO74ONx96FoyBv/YuYN98k4NZqUNGVoJnrT9Mt6Xc0ZowI114HRx9Pi9wzzpC/3WrJhPdMWbNG5I/Xw4L7EVPe/dCW/7vCkHPOwpm+GPzc7dFd/6op4A+qozjo70xz4IAt8xfYUPMbsmiJpbxLrV9vy+hRpnz1NaxAoYUaPapk/3IxkHJudOdbtXWV/O3T2+SxMx6VhlneEsvPq39Wx2S+Pftt+c/6/0j/9AFy/yn3yYI1C+XUXiPkic+ekEFdB8ubM95U6+TvLX9P/tj3jzJ20BioyEBG/Fu7Y518t2KaDOs8TN6e8bac2eM30ro+9v+ioJrGRJd+pDfs3CCtG7SObl+8rsN168X6061iPny/GFhGKhmwQWCvCnC/K4deCflEJs6RPEyebGPcfpYGmw3GCRMtIagkCsihwCHlYZDSnK7Ldajrt6e/LaN6jZJ2jXzsOQ/WXaJwcsPhBM/gUkdQM2M9+R+xfwfnNqtXl916yPqhNOjHw6A7kxjvOfl3C55r1qDeEdpAOKjKwDqlnUS0xnAaZwoJ7PPabax+H9MVfKpYQuc9l65+gYESem7bXIzh9Yv7CYuRcifCeqwN0QyePte5Lr5+w3q1B47qc6+gZw8cOPU94/GZun3u261dp7bydEPDOKoG9E8byh3WlvDBkZMXg5bRIDx9irsZjUMvdECQuBcExdNHGlCPgalfZcjvf5ciY8aYMuoSqMkQ8eyzTbn1FltyOohs2oi4I0w1jnPc4k/DUvkFGT3v2V4XL6Fan2OKM6DTc9jkby2cIGjIG1DDzZ4j0rWzIaPPt+Wozs5WJrqj5elNGq66ifBHl61WZi3p17qfskqlAZxaG9dIBmE0z24O9WSu7CvYLzX31JDO2Z3lqolXyUdrPpJ98IKxav8aOIiZKZcPvEzemPuGXN3rGrls0KWwY4cxEv5xcFi5ZYUs2LBABrQfIHk7t0qzek0luyb2BiMQF73+vmXXFrlx0k0ytP1QqZVeq1TjD6LjfSEBEQy0Y/P0UzEzKMQ6O2ZIHMi9GIYmvje0innLwSiIp1cGVMPuyMfe8lpO3XvFqTbv0I45cG+D3++aaTVUu9Ftik5IWM/1s5w95/p9WNw1TbzqKWwifx8MCD/2nr3YKoAtiq+/QfWZmOPH46heSO4MzDuYr/XRJ2KNf0nMoUNLz66dmAn/S4+T3H++aTMM5NC/qZnhbgc6trvn/iJpgi2L9HdRAWQJWxYy4q37tip/FNS6+A16Mrdz/0657n/XScfsjtK4TmP//TdcRjSABUGoVVEHIvHgHE7QKpMo4XBzvadXOO0Rzs07NT8lz27UqBHG9Roqle4TSkJnYjqD3wWf01OnTpWj+x4tjej1KIqgJfTZOHiCR6e2grckIqQz0qAYr0P7DlIPW310pelvh/N1+3YbEyajzGSdg66eNx3Asmg61oj1pJHSe6OGhjr+kr6109AfHseZx8ceY8rwk1ziNwi3Jc+G1znHcn0jmD7rmYd7tW9XBEPFFLVm/srrlgzoh4nDQhtSusgffm/DmDFFcnMNmT7Dkpdfs+Txf/rvdOXV14GiA5KRgvPEPbao6HrngQ02rOioIp++fLrssfbKGe+Mlk/O/UTmr5kvLRq0UEZRlx5zqbSs11IxaQ2PDJsMIM30nnS6cRv30TjJqZcjYwaOib3NYaKrKkpXjjsDDAb24iXK0tmge7ZqEiihF+4tlIy8dc6Jc5UkKcZafLYL7kFnu3GPG3zP4H4Xax6JSGfD6Nf62x1iYB+gAUNEgw5AiGPIRMLmlkUaTHZoX/ItEQh4wAiSSGb8bMmj/7KUS9+6dZ1JKZvu5CmWHHWkocYBN6oeoBL+qgD9PD3VeyyIlBn9WcxeO1vaNmqrtsFygsBJfcyBGhOqMjDw2itWqr3oxQNwzEATn5BG5tu2bQMv8NYgrF27VobBZqYutk/q8ZRYKIa+G7PMeTCw2YnFXF5HjxotnbHp3h0xEso6LlXu3LJG6/dffeA4BIZFSfmKawNy4bmmDB3iuNIkbdj/tf/lhkGvXJpm4TodO+aQwQGZ9l2KchZBb1Bz5tly9RW2nAAX4avBzJdj95RAYPhivImtLCJLl9pywR9suet6Q264PkVtp+ZEYukyWxYuhP/uVdhtdRmkX+CzaLEtE9635NabU5SnsHB4aDy9rvRgRB/cVLlHc0DL9n3b5dP5n8qonqOUgRTbFJl2uImBzpvx2MdDO7ru/CvyVqjvVNfGFADe3poHaR3E5Gw+NICYgRtuEvOM0WIMG1p6cA+NW2nPcO4Dq+L8hRulwZ+uxFnn2H8L71OlGI8XLqQlg2ZOzlOl/OUkjaf00QFJuPPQKwWRMJnwxDxub1J+wDkL1waRsXQSrzzihLMNQkNKCqy40+1ijVxoNqxddJVKC+yDeXvzpF5mPckAU6/yAOHVhlG3Ultg+6lBQ8Y46V4VZaKnuNzcXG/HMjymrQDerZZDDUHL9dY4OCLWwMGVUjiDUnt6NJ/qMtOOtYy+06meA8/UEKbH3ZaimCvTusdKHpTB9sTgbleMo9/rb4TTA8ZzDzxkyptvWzL1O1tuucmS88YYMuF/hpK66a6T0jzV9ydcYMm7T+IgjmuRATyH8QAOegzjiUxca+vaBdvBYGT37HhsnTvX6eg3/MWSm7GW70uY0wi6CqQndnUy6yibCuJuPfY4jIY6OgOhu5D8iMBOz3QcyM/vB+OzKEO49qQZfLvGMTJyjQfqQrmI1KoU/V5f8T7lwftLVC0ueugolX9FHaPaa+c2EfO1V7H3FvvhGSLhFum7A6VC/rK+amdgiQP/Eh5ACwv1GJg4UVJ37xXjQlc782iTnvmTNvTcAm2m9dHHWDNvLQYNJMMFSIM80cuAJTxG3tId3CuNpr1Hv/KKHvquFjSA8KUEgRN4hoQYQYZAif6RdVono05UE/vQXOaum6uMZOmXIO6AgY99mTsgpPMRYuC42+oYlJASBjGOdzQa9gqofp7ItA0S3zRltX7kkUcqxzBk8rEEZqbVBFo9Ggucwy1NyxalOxl5ON/Qcp11k5GBpl86SqlnfmOnpBrtwgtMufAySMGYka9YmSqtWhpltEaUwAf25/KGIXOmgInDr8l/n7fk088tufB8R41DeB3am/LhBEdr8MjjAfnHPaYcA5W+DqE46ffq6vGR9c9/ewv3KimbbcA4uq9AbVMqqftBpQjC0hMC/Z3MnoFxYg26c4Rj/H7g2ljbN+DnvHg9JDSR28d76DcS2oNWodES/cx2tXd/itRoWNc3aHvWbHooKatG9g0h9oisa91uUpTbHv+wmDZcG9FtatOezfLot6Pk5hEfS2OA1u/91o158kmOZMdFaXoO1B7GwqGJ9XbrQWxxu+oKqOYHhIvlvMfypI0DNwwaE2vJv/wUZb7yWFzMNTwZehU0P4WfqtODe6WuUReTDW/1cWhBQutyLo5ePQTVe0IYOidZ1LLcfGNJX45EnCrov5HGKuWVNTg2uumnVO77sPViAc5mpjMYqsppmMQ19VQu2voMeg2dKnsavHENXRvAuUGwE9GKPj3GRuuG9Uu6D9cmoAFSjNpLkxuufByod+GoRBq6aUma8BnKa5vMi0ZxNJTR8zWNF5eVPvgwAG+mpnIVqt87UEP+Bj9a3//gGAVhoNOD44yVM4T7Rgd0HKD2jB42kzru+2abpWrDK5RLMK8EFf+O7YR1XrOG3wkFtGsP/wOSS2cxcTocWiZ+sU+koi0h2xDtKmrAKC7SgBY1bJTlvZnvyQ7YaVzQ53zJ1BMGNHwejWtwwhlOA+POjMYnbAPlxaWGkuo0kg9eNFUnDbMWqjo/Oq2N7SzWJVeI+cJ/sawDAxgYYCp1sDvvCPdEjdnEM7SyGTOUN444Mfz/3V+4X6nb9Tn3/lOWxORZDQnR3LBT0KhAD4AlWVSru72YdNC2zasf8B35LLeL18OygR57WQA1OtEyfTqOlKOPdg3o0ksvjYqha2pQFcAFe1rmeRnFcX21U4dOiqG7EdHpD9druA5CRmrBeikz0//AyU7rtbeYeZDv0Hczz16nURShspNyfDl40JYrrwvIlWMNGTWyZFsav3OMOmN0yQw6HL6l6odqAI4irrD74G61DqqMm0wYwmBgUgMmnLIIXS5GGQqLCmVXwS51HGuUSRMbnVuQwjFz5hSOYBjc1T72BlirwyldegBPLHLe0FivhYWOMaZ3jNC3kHGvv14MHHCzA74RKFDRbCDeQDx0G4wEi0ZQmWlw4BPFRIIMg77gW9RpERY8T2vjfna6IiYzt1EvBjoFpWLrorFiPv8stBK5keuHHZaFIUPnVdd78N76ZrLI55+LefttSjWvXP9SoicjweBbJgTTGzjMynwTSyMwcgrce58YGKyN35xZOo8yiUu/YF1zCS2aQGNdpqHjNAZdHOcp/r+UtjkWpKVgWUpPoiKAzS+AF0MsvdCOYt76eZK/L1+O63RchFQ+P7M/0libGjU/hQXzt2nYSG1MdKT1iZB3NPLk8ozi6P/Fk9mDqaJtO/7XyWAZaMhUi2tFUQTNnJP70KMgGqJysgjylzqV0w+EYFWVaZMcb8hnteROWHrcWbnSliefseRPN5ie21fCwfSDT2icPVCzcfuRmpWzkJyFlCfVhMmcRnEHwdQJq0oDZsxBfWZ0aLBcnGWxQjirqsRAHkKfA7WwbS3awKUgE16I4pH2os2TY8i+Q/tQ1zU9d0eEg0dmTX8D3JZYXiBzmbN2jjqLO7dRrhOVqm5Yo6sBu7z2qQGzLrFtUjKh22bdaqYQvLfXrcOWNqjO+/QuUeliyyMiO+1HwynvCiNltZ+Vh5hHEXjQE+ecVLv7DQWYj7M4up65zZXmFlwidBfPLzyveHsxFnCSFmnbmla1z90wV3bs3YmjVgfLl4u+klXbV8plx14W1STPCw/1jgMkhRDF33z0C8bnZL68JbWwmVXcBxrF5eTkKAN0zXuZmxphyOnpAF/vDc/U3pViwIfAKZ0zcKLA59BfDGAP2yQcdAMBZyIVTSE5jvAXGgiPM3V30PHatoVB3T0pxWev6/c6bjiY+nuZK3s8fyGBxpBc81KDGL9xhkHEygthMiesQgzWVR7Ypj3K6gcvmxMaSoPffQ/vbk859PCTMM44RDfYFf1DClYnqyzqtK5c3E1jxQpbfvqJTqtcEcLccgtjtIHjjJ90ZBifLf5MFm9ZrLLguEROphwG+WHmTEWiQMuogrsDBe8NLDUaPIrTrWJnmfwQU7cvqkWiZOYOas6OGgc5f38LcbSqRo31884EC9tcfVSUP/CgOA4BwoRL0TpSmmDbW563XH5a86OKfTwcR11+7OWJYeaECBrbPN4ymFcklNhoba5bVXII5ZnuZ6JCTbiXhK5U7lSzv/TSS0ofT2cygwYNwt7npqoSvBKVVzbG1w5p9AShvPiHzTc9gsUkhXlw5hgJw+xTU8PDK09rHHWW7gGtvMTMlGJAOcH6GFbDzZqL0QNWw6RlEDbXzaiu+0UHLf7wjNz27YrLViFliqYdeq0HB5sOLaX9Vq9XOdxpV66y5edZNk+bLVdJwcE/lkA7DT9thG3pjyf80dEaIaPisc3V3iLm7y6Ynqi6DWAIi8Edj8xdv3e+ev/VachZea+fvWMn5G0q6lnPPTh23HwjPbo5oBORfTRLJ7o+Tj3qVODkjBdkZApG+CEtejpEAwtEUS5+o88lrhSaFuGAKKM4jzalGDoN4Dp16qQaOBfZIwHzykQRHi2As2V6sSEzp1GcOxAuv9M1rPZw4/7+i70nYdn6Y+gBMSYLSyqOBYdw8hKQCRunoj+wA5YyhqMIoGhTDmPeug1qsLILtmxXdB1Z5YGjXayB/QA/g30Mv5iDbmflAQhpUGpw9kqHGX7g9jvFgKcs81QcrBQS5xAkN6rco1HfarRY3Zu3OHYcPHjuhONNOfEE/TX8tUy7CR+11BelxYFGKAv/IgVPR0TR9FtXXG5ds2EYmnLPXY6um5m7vhfjQu0U6es3xNjWmMwr+/KypWtgNY9CPRFF1leig9rp4hMxTur2wSaCS2w0yo6FF5WLP/GIhr4YUJ01d7StShxSuUZOl+zkoxwD3YE0oRM4L4E5lZFpcc7tapMmTVIEJPdvjOMAYyEm4W3dulUxbC+jODJ0WrmToTNuLHm4C1fl9yQ2CGxj65/MmSvGcceWLEj5QI6DXyRttA8wpaLoGXapl5X4wE5J46bihqg6c/m9wbz4ohIMVfzgI5JVizbCdTQtaZdg6u+O5dFlCraXchMyjg46HZ/d9/q7vup2iKM82RbN/v1QCyZc8DJvHcl1RR83r7y8xFArBDaZecgrV+LSt6FFooOTdnB+9Mwdhoy5yDG+pF/xhvB6qLfDl4bgPDnthurN8tfCvdKGayOEqSQ8r0SxvOPkLKjmomrdwI6AYhE3HDy/hGR6DOJq+xpU99G2NzbRaHgVsyNqGj195ftEBhq2qlPSfMyJWVeZcJfJ9XaewTBh1gS5aMBFUg+HuySkLinxRKtCV0RKJEUiw6KzNx5TTns2ljs08LtXm0/lS3qI+/DDD6VLly44Q3kTvIctVAye6+p+gwbOyUAv6NaaRNqjCcA6jd88qnU8zJhseJIyMJCqjhg6yoVBPhFWxGFAV9lrzsgb12pcOn8vpuKO4ZNe7iTx3nPCoQeJiG0x0tGYxJ+/SCOqn1HTHUfTBbM+G7tQ1HovVbz6fSgR1q3HgfdzcYpcX7gKNqXhl2+KXa+BGDwiNiSNASdS4QLHvfK6vwbFyeijT2C7Yw+c9DWE0oRI0yaGTHnNlP79AnAjbUhuDjwU/jkgt95kSt8+Thx3ETUObDcNs6JzOa3Skinhnw5aUFiwcYE89+PzMm7EncpqWte1cngFBNxpdNqIVzqICQblMIZOY/wEEqa8ECQoDfSs310v5nNPCy3fQ+usPBB0KhVL0Kht3WrLPBzaNKCfqWw4Y4HllaZRrch1qutm/c71sm7bOunXoZ9aGqmdWTuxfII2ExBWq3vIyckR/sIFtnEv5zJqzkTzeErNAwcOVIyYancy82IJKxxUj/dMQ8mcgdK41y8WuB5ZVY9XGBgYjHbtxHzgvpL9jcH3VYEkB+OqDuygajAiItw/p0eNcIiFoRfbSkW0FzWAIM9o1IHhUFfviX84Zu6nQjR9MPO2lywVe9o0sb78krNeJ1tsfbLAgK2XXnae9XuNVPCZrmfN319XzI2tOli3r+uxXYrpmKfOl49BWBRgrr+xSH740WlIrijBGA5afM+lzrY5IrffC7etkMw1Wv2ONmX27BRp1hQSF7ZkvvB0Ck6ddUQ0HacYmOtGtRvXs59btg8yaQam1+2lZXZLOe2IU6XgEIwSXUHVOdh5LHm5wJShX6lv7gfi5kVEdxwQxV69Wu1BT3nnDce7HL+XRyx3+hjv2TTZPRkWw0X0U/+FgSG0hgyRUHZiJehvEIc129fIpEUfwRC2UJrWbSpjB46VupmOY6SYJmCJQI9EqlRiMDvH42o4/lkEwz4vIUSdtsY1ba57j8epQQynnXZasWGbV6JwNGJcqtvrQOysBd0an8P9wsH4Rb8PN6BXQKHYvrz6uuqgaH/0PFeVQXU+jSBHCI785Yl8YZDloKv8uSfQDzQ7C9vlqm2rcKrbLKwbZkhWRpZ6FwaN8K+DFcG99vaPP5Zsf3JXENfPuRjt1T4Yj0HDQT+04CbXfv55kTUbxeja2THKQR81zjpLORsxWjR30rjT4dg8+4UXxegNyzMuDQThcaJZHF/Xh07NZ9c73WJYVS0hHOa0gdtOnLyngyuqWibSxWmba8rOHdjuhGXG5s3gPx5Oj3gwUOvWJqrccX1Mpk64kUIsgzZ6ijkUAABAAElEQVSZOeuUvsKZnnXLvcx7CvZIQVGBPPT1Q3Js22PVdrhdB3bJN4u/kfq1G6h1WravWPJU5QihX9iyBdAhGbQlPesmWD9yEJON4LN1DwQCLEUaXbs69eImuAMh4X9p8M0deLt323LV7y357SgD56eH16IkHIEgQNYZQyscgdy9VTd1dvrG/I1CHwOU0qssYEA1OKi6DR8rAZlwfFO/z9uSh3l6XbV0TXQ0/Yp16sOHD8ehH0PgpMg5fEIPen5x1/E5o1iNmSbVAV6e4vid6/M8qjUZYqdAuL7OtsdOWuGBgxBDOET4LTho2RzdoU5lCpxVU24SJmMgE2ebYuC2l3iDHrgJU8HF+DH+u5dk3Lt3ylUjrpYHRz8gdTNwclGsAzycT9gfTBIbvr2V0wo3woXAX9PL/Z73mn7Bq9G2rZhwv0rPYYKfdTcG+Rlzxfx8ohhHHBF+vbZpEzH69in5ruHqfPVzaP4hz4zOqEd2depLf+Y7be+xe48tDzwckI5wK8yzBd77wIKzKEM++cySp5+DjQyWwI8dCPe/2BfNEwQvHUtOHo2DG52rvyudVZFx10yvqRjAF/O/kHu/vV9+3jldpl0yTcadMk75Eye0AmyB/Hrl19K1ZVepz+N2VaP0l0/MsbTISwCawMH6CDz0d+HSh3nuOZIy7o4Spu+zvmLGKZgwAAPaQ7CXoK+CRx+Eh0+4kWaopOyDWJRcOLniboRD9iF5ffrr0rxuc7mw/4Wqz2qmVRK7Eu4woCqjuErIyp0FtebcfeZl+MZ423dsl1w6QgoJyvUr33GQW7JkiVqI51p6NtaK+M4vEcmomfmcOXNk8+bNmJ23Vqr30PSMl5ubW+bYtxC8ko/lUIDbmukNrgHOO0b7Lx4jmIRjB+123I5lygFVOZ8OQYdL8czHeciUtqgS/XbJt1C9TZI7TrsDkwCobeGYImZmq0vpGrzX7FgrN354g1w/4Hrp0qILBvf60UlqXFbi7Mk9c+eCcqgYygGczkgYj9/4zMC46C82+gr3p9NxBX3eu9192jiGGM76xaYaftYs+PvdLSn0QMZzcglHj7ocdGDDYbjWd51MYv/LHW2UwKlYYMjD8bzPvmCpMwH64wjev9xpSX/MH7ocgeN9IZUPw/o52+WatbbUB5+kkoDHhnPL9lvvWurd
Twin STEREO spacecraft pre-perihelion photometric and polarimetric observations of the sungrazing Kreutz comet C/2010 E6 (STEREO) in March 2010 at heliocentric distances 3 − 28 R⊙ were investigated using a newly-created set of analysis routines. The comet fully disintegrated during its perihelion passage. Prior to that, a broadening and an increase of the intensity peak with decreasing heliocentric distance was accompanied by a drop to zero polarisation at high phase angles (∼105–135○, STEREO-B) and the emergence of negative polarisation at low phase angles (∼25–35○, STEREO-A). Outside the near-comet region, the tail exhibited a steep slope of increasing polarisation with increasing cometocentric distance, with the slope becoming less prominent as the comet approached the Sun. The steep slope may be attributed to sublimation of refractory organic matrix and the processing of dust grains, or to presence of amorphous carbon. The change in slope with proximity to the Sun is likely caused by the gradual sublimation of all refractory material. The polarisation signatures observed at both sets of phase angles closer to the comet photocentre as the comet approached the Sun are best explained by fragmentation of the nucleus, exposing fresh Mg-rich silicate particles, followed by their gradual sublimation. The need for further studies of such comets, both observational and theoretical, is highlighted, as well as the benefit of the analysis routines created for this work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.