In diabetes, some of the cellular changes are similar to aging. We hypothesized that hyperglycemia accelerates aging-like changes in the endothelial cells (ECs) and tissues leading to structural and functional damage. We investigated glucose-induced aging in 3 types of ECs using senescence associated β-gal (SA β-gal) staining and cell morphology. Alterations of sirtuins (SIRTs) and their downstream mediator FOXO and oxidative stress were investigated. Relationship of such alteration with histone acetylase (HAT) p300 was examined. Similar examinations were performed in tissues of diabetic animals. ECs in high glucose (HG) showed evidence of early senescence as demonstrated by increased SA β-gal positivity and reduced replicative capacities. These alterations were pronounced in microvascular ECs. They developed an irregular and hypertrophic phenotype. Such changes were associated with decreased SIRT (1–7) mRNA expressions. We also found that p300 and SIRT1 regulate each other in such process, as silencing one led to increase of the others’ expression. Furthermore, HG caused reduction in FOXO1’s DNA binding ability and antioxidant target gene expressions. Chemically induced increased SIRT1 activity and p300 knockdown corrected these abnormalities slowing aging-like changes. Diabetic animals showed increased cellular senescence in renal glomerulus and retinal blood vessels along with reduced SIRT1 mRNA expressions in these tissues. Data from this study demonstrated that hyperglycemia accelerates aging-like process in the vascular ECs and such process is mediated via downregulation of SIRT1, causing reduction of mitochondrial antioxidant enzyme in a p300 and FOXO1 mediated pathway.
In diabetes, hyperglycaemia causes up-regulation of endothelin 1 (ET-1) and transforming growth factor beta 1 (TGF-β1). Previously we showed glucose reduces sirtuin1 (SIRT1), a class III histone deacetylase. Here, we investigated the regulatory role of SIRT1 on ET-1 and TGF-β1 expression. Human microvascular endothelial cells were examined following incubation with 25 mmol/l glucose (HG) and 5 mmol/l glucose (NG) with or without SIRT1 or histone acetylase p300 overexpression or knockdown. mRNA expressions of ET-1, TGF-β1, SIRT1, p300 and collagen 1α(I) were examined. SIRT1 enzyme activity, ET-1 and TGF-β1 protein levels were measured. Histone acetylation and endothelial permeability were further investigated. Similar analyses were performed in the kidneys and retinas of SIRT1 overexpressing transgenic mice with or without streptozotocin induced diabetes. Renal functions were evaluated. In the endothelial cells (ECs), HG caused increased permeability and escalated production of ET-1, TGF-β1, collagen Iα(I). These cells also showed increased p300 expression, histone acetylation and reduced SIRT1 levels. These changes were rectified in the ECs following p300 silencing or by SIRT1 overexpression, whereas SIRT1 knockdown or p300 overexpression in NG mimicked the effects of HG. High ET-1 and TGF-β1 levels were seen in the kidneys and retinas of diabetic mice along with micro-albuminuria and increased fibronectin protein (marker of glucose-induced cell injury) levels. Interestingly, these detrimental changes were blunted in SIRT1 overexpressing transgenic mice with diabetes. This study showed a novel SIRT1 mediated protection against renal and retinal injury in diabetes, regulated through p300, ET-1 and TGF-β1.
Chronic diabetic complications affect multiple organ systems and lead to significant morbidity and mortality in the diabetic population. Diabetic cardiomyopathy is a major etiologic factor causing heart failure. Dysfunction of both vascular endothelial cells and cardiomyocytes contributes in the pathogenesis of diabetic cardiomyopathy. Hyperglycemia has been identified as the key determinant in the development of several chronic diabetic complications. Hyperglycemia leads to oxidative stress and several other abnormalities causing changes in cellular signaling. These diabetes-mediated biochemical anomalies show cross-interaction and complex interplay. Such changes also cause alteration of transcriptional and post-transcriptional machinery causing altered production of vasoactive and cardioactive factors. In this review, we will highlight some of the important signaling changes leading to diabetic cardiomyopathy and discuss possible potential therapeutic remedies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.