In the present review, we address the effects of sewage sludge amendment on soil physicochemical properties and on soil microbial biomass. Sewage sludge is a by-product of sewage treatment processes and is increasingly applied to agricultural lands as a source of fertilizer, and as an alternative to conventional means of disposal. The particular characteristics of sewage sludge depend upon the quality of sewage from which it is made, and the type of treatment processes through which it passes. Sewage sludge may substitute for inorganic fertilizers because it is rich in organic and inorganic plant nutrients. However, the presence of potentially toxic metals and pathogens in sewage sludge often restricts its uses. Ground water and food chain contamination resulting from sewage sludge amendment is one major concern worldwide. The health of soils is represented by a composite of their physical, chemical and biological properties. Amending soil with sewage sludge modifies the physicochemical and biological properties of soils. Perhaps the central constituent of soil that is important in the context of sewage sludge amendment is microbial biomass. Soil microbial biomass, the key living part of the soil, is very closely associated with the content of organic matter that exists in arable agricultural soils. When sewage sludge is land-applied, soil enzyme activities may be directly or indirectly affected by the presence of heavy metals. In several studies, results have shown that sewage sludge amendment increased soil microbial and soil enzyme activities; however, reduction in soil enzyme activity has also been reported. When incubation periods of sewage sludge were longer, heavy metal bioavailability increased. Soil pathogenic activity has also been reported to increase as a result of land application of sewage sludges. The level of pathogens in treated sewage sludge (biosolids) depends on the processes used to treat wastewater and sewage sludge. Agricultural application of sewage sludge may result in the transport of pathogens through aerosols downwind of sludge storage or dispersal sites, may contaminate ground water, stock ponds, or may produce food chain contamination from eating food grown in sludge-treated land.
The lack of knowledgeable and skilled workers is a major challenge faced by the Malaysian furniture sector. It hinders industrial productivity and its ability to move up the value-chain by adopting high technology. Therefore, in order to assess the awareness and readiness of the Malaysian furniture industry for Industry 4.0, a questionnaire-based survey was conducted with a sample of 778 large-, medium-, and small-sized furniture manufacturers throughout Malaysia. This study is part of an on-going Erasmus+ program funded by the European Commission, initiated in 2018 to develop a university-level education program to train workers capable of handling Industry 4.0 technologies for the furniture and wood industry in Malaysia. The results revealed that manufacturers of wood-based panel and metal furniture were more prepared to adopt automation and Industry 4.0 technologies compared to solid-wood and leather furniture manufacturers. The benefits from Industry 4.0 technologies include increased production capacity, product diversity, cost competitiveness, and workforce reduction. Further, the results of this study suggest that the lack of knowledgeable and skilled workers to handle Industry 4.0 technology is a concern among furniture manufacturers, and possibly the proposed university-level Industry 4.0 program may be beneficial to train workers for the future of the industry.
These plant species have potent antioxidant profiles and polyphenol compounds that may help to manage with radical related disease and aging.
Glucose oxidase (EC 1.1.3.4) sensors that have been developed and widely used for glucose monitoring have generally relied on electrochemical principle. In this study, the potential use of colorimetric method for glucose detection utilizing glucose oxidase-magnetic cellulose nanocrystals (CNCs) is explored. Magnetic cellulose nanocrystals (magnetic CNCs) were fabricated using iron oxide nanoparticles (IONPs) and cellulose nanocrystals (CNCs) via electrostatic self-assembly technique. Glucose oxidase was successfully immobilized on magnetic CNCs using carbodiimide-coupling reaction. About 33% of GOx was successfully attached on magnetic CNCs, and the affinity of GOx-magnetic CNCs to glucose molecules was slightly higher than free enzymes. Furthermore, immobilization does not affect the specificity of GOx-magnetic CNCs towards glucose and can detect glucose from 0.25 mM to 2.5 mM. Apart from that, GOx-magnetic CNCs stored at 4 °C for 4 weeks retained 70% of its initial activity and can be recycled for at least ten consecutive cycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.