5G networks and beyond introduce a larger number of Network Elements (NEs) and functions than former cellular generations. The increase in NEs will, thus, result in significantly increasing the Management-Plane (M-Plane) data collected from the NEs. Therefore, the conventional centralized Network Management Systems (NMSs) will face fundamental challenges in processing the M-Plane data. In this paper, we present the concept of Quality of Monitoring (QoM) as a solution, which is able to reduce the M-Plane data already at the NEs. First, QoM aggregates the raw M-Plane data into Key Performance Indicators (KPIs). To these KPIs, the QoM applies a datadriven algorithm to define information loss limits for QoM classes specific for each KPI time series. Then, the QoM applies the classes for compressing the KPI data utilizing a lossycompression method, which is a derivative of the Piece-Wise Constant Approximation (PWCA) algorithm. To evaluate the performance of the QoM solution, we use M-Plane raw data from a live LTE network and calculate four KPIs, while each KPI has different statistical characteristics. We also define three QoM classes named Exact, Optimized, and Sharp. For all KPIs, the class Optimized has a higher compression rate than the class Exact, while the class Sharp has the highest compression rate. Assuming that, for example, NEs of a network produce 280 MB of raw data containing information that needs to be transferred to the network operations center; we use KPIs to represent the information contents of the data, and QoM solution to transfer the data over the network. As a result, the QoM solution achieves an estimated 95% compression gain from the raw data in transfer.
A feature news story is often accompanied by illustrations and visuals. These visualizations can be, e.g., timelines, line charts, pie charts, or images. In this article, we present a largely data-driven and domain-independent approach for generating visualizations to accompany automatically generated news articles. We demonstrate the feasibility of our approach by applying it to statistical data on crime in Finland. The practical implementation demonstrates how the automatically generated visualizations provide additional information and interactivity to the news articles. We further illustrate how the approach presented is easily transferable to different domains with structured numerical datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.