Epidemiological theory generally suggests that pathogens will not cause host extinctions because the pathogen should fade out when the host population is driven below some threshold density. An emerging infectious disease, chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd) is directly linked to the recent extinction or serious decline of hundreds of amphibian species. Despite continued spread of this pathogen into uninfected areas, the dynamics of the host-pathogen interaction remain unknown. We use fine-scale spatiotemporal data to describe (i) the invasion and spread of Bd through three lake basins, each containing multiple populations of the mountain yellow-legged frog, and (ii) the accompanying host-pathogen dynamics. Despite intensive sampling, Bd was not detected on frogs in study basins until just before epidemics began. Following Bd arrival in a basin, the disease spread to neighboring populations at ≈700 m/yr in a wave-like pattern until all populations were infected. Within a population, infection prevalence rapidly reached 100% and infection intensity on individual frogs increased in parallel. Frog mass mortality began only when infection intensity reached a critical threshold and repeatedly led to extinction of populations. Our results indicate that the high growth rate and virulence of Bd allow the nearsimultaneous infection and buildup of high infection intensities in all host individuals; subsequent host population crashes therefore occur before Bd is limited by density-dependent factors. Preventing infection intensities in host populations from reaching this threshold could provide an effective strategy to avoid the extinction of susceptible amphibian species in the wild.amphibian declines | Batrachochytrium dendrobatidis | chytridiomycosis | emerging infectious disease | Rana muscosa E arth's biodiversity is increasingly threatened with extinction.
Chytridiomycosis, the disease caused by the chytrid fungus, Batrachochytrium dendrobatidis (Bd), has contributed to amphibian population declines and extinctions worldwide. The impact of this pathogen, however, varies markedly among amphibian species and populations. Following invasion into some areas of California's Sierra Nevada, Bd leads to rapid declines and local extinctions of frog populations ( Rana muscosa , R. sierrae ). In other areas, infected populations of the same frog species have declined but persisted at low host densities for many years. We present results of a 5-year study showing that infected adult frogs in persistent populations have low fungal loads, are surviving between years, and frequently lose and regain the infection. Here we put forward the hypothesis that fungal load dynamics can explain the different population-level outcomes of Bd observed in different areas of the Sierra Nevada and possibly throughout the world. We develop a model that incorporates the biological details of the Bd-host interaction. Importantly, model results suggest that host persistence versus extinction does not require differences in host susceptibility, pathogen virulence, or environmental conditions, and may be just epidemic and endemic population dynamics of the same host–pathogen system. The different disease outcomes seen in natural populations may result solely from density-dependent host–pathogen dynamics. The model also shows that persistence of Bd is enhanced by the long-lived tadpole stage that characterize these two frog species, and by nonhost Bd reservoirs.
This paper reports on the response by amphibians, benthic macroinvertebrates, and zooplankton in naturally fishless alpine lakes to fish introductions and subsequent fish disappearance. We assessed resistance (the degree to which a system is altered when the environment changes) by comparing faunal distribution and abundance in lakes that have never been stocked with fish vs. the distribution and abundance in lakes that have been stocked and still contain fish. We assessed resilience (the degree and rate of a system's return to its previous configuration once the perturbation is removed) by comparing faunal distribution and abundance in lakes that were stocked at one time but have since reverted to a fishless condition (stocked-now-fishless lakes) vs. the distribution and abundance in lakes that have never been stocked. We quantified recovery rates and trajectories by comparing faunal assemblages of stocked-now-fishless lakes that had been fishless for 5-10, 11-20, and Ͼ20 yr.Faunal assemblages in the study lakes had low resistance to fish introductions, but in general showed high resilience. The mountain yellow-legged frog (Rana muscosa), conspicuous benthic macroinvertebrates, and large crustacean zooplankton (Ͼ1 mm) were dramatically reduced in distribution and abundance by fish introductions but generally recovered to predisturbance levels after fish disappearance. Inconspicuous benthic invertebrate taxa, small crustacean zooplankton (Ͻ1 mm), and rotiferan zooplankton (Ͻ0.2 mm) were either unaffected by fish or increased in the presence of fish. For both the benthic macroinvertebrate community and the zooplankton community as a whole, fish disappearance was followed by a steady change away from the configuration characteristic of fishcontaining lakes and toward that of lakes that had never been stocked. Both communities remained markedly different from those in never-stocked lakes 5-10 yr after fish disappearance and converged on the configuration of never-stocked lakes only 11-20 yr after fish disappearance.Recovery was likely facilitated by the winged adult stages of many benthic macroinvertebrates, resting eggs of zooplankton, and nearby source populations of frogs. However, many frog populations have disappeared since the time that lakes in this study reverted to a fishless condition, and the viability of zooplankton egg banks should decline in fishcontaining lakes over time. As a result, faunal resilience may be lower in lakes that revert to a fishless condition today than is suggested by the results of our study. These findings have important implications for the restoration of alpine lake ecosystems.
One of the most puzzling aspects of the worldwide decline of amphibians is their disappearance from within protected areas. Because these areas are ostensibly undisturbed, habitat alterations are generally perceived as unlikely causes. The introduction of non‐native fishes into protected areas, however, is a common practice throughout the world and may exert an important influence on amphibian distributions. We quantified the role of introduced fishes (several species of trout) in the decline of the mountain yellow‐legged frog ( Rana muscosa) in California's Sierra Nevada through surveys openface> 1700 sites in two adjacent and historically fishless protected areas that differed primarily in the distribution of introduced fish. Negative effects of fishes on the distribution of frogs were evident at three spatial scales. At the landscape scale, comparisons between the two protected areas indicated that fish distribution was strongly negatively correlated with the distribution of frogs. At the watershed scale, the percentage of total water‐body surface area occupied by fishes was a highly significant predictor of the percentage of total water‐body surface area occupied by frogs. At the scale of individual water bodies, frogs were three times more likely to be found and six times more abundant in fishless than in fish‐containing waterbodies, after habitat effects were accounted for. The strong effect of introduced fishes on mountain yellow‐legged frogs appears to result from the unique life history of this amphibian which frequently restricts larvae to deeper water bodies, the same habitats into which fishes have most frequently been introduced. Because fish populations in at least some Sierra Nevada lakes can be removed with minimal effort, our results suggest that the decline of the mountain yellow‐legged frog might be relatively easy to reverse.
A newly discovered infectious disease of amphibians, chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis, is implicated in population declines and possible extinctions throughout the world. The purpose of our study was to examine the effects of B. dendrobatidis on the mountain yellow-legged frog (Rana muscosa) in the Sierra Nevada of California (USA). We (1) quantified the prevalence and incidence of B. dendrobatidis through repeat surveys of several hundred R. muscosa populations in the southern Sierra Nevada; (2) described the population-level effects of B. dendrobatidis on R. muscosa population abundance; and (3) compared the mortality rates of infected and uninfected R. muscosa individuals from pre-through post-metamorphosis using both laboratory and field experiments. Mouthpart inspections conducted in 144 and 132 R. muscosa populations in 2003 and 2004, respectively, indicated that 19% of R. muscosa populations in both years showed indications of chytridiomycosis. Sixteen percent of populations that were uninfected in 2003 became infected by 2004. Rana muscosa population sizes were reduced by an average of 88% following B. dendrobatidis outbreaks at six sites, but at seven B. dendrobatidis-negative sites, R. muscosa population sizes increased by an average of 45% over the same time period. In the laboratory, all infected R. muscosa developed fatal chytridiomycosis after metamorphosis, while all uninfected individuals remained healthy. In the field experiment in which R. muscosa tadpoles were caged at infected and uninfected sites, 96% of the individuals that metamorphosed at infected sites died vs. 5% at the uninfected sites. These studies indicate that chytridiomycosis causes high mortality in post-metamorphic R. muscosa, that this emerging disease is the proximate cause of numerous observed R. muscosa population declines, and that the disease threatens this species with extirpation at numerous sites in California's Sierra Nevada.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.