We have used solid-state 13C NMR to study the structure of the adduct resulting from the inactivation of the enzyme transglutaminase by 3-halo-4,5-dihydroisoxazoles. These inhibitors were conceived on the assumption that they would inhibit transglutaminase by attack of an enzyme active site cysteine thiol on the imine carbon of the dihydroisoxazole ring. The tetrahedral intermediate formed could then break down with the loss of the halide group and the subsequent formation of a stable imino thioether adduct. We have compared the 13C CPMAS spectra of the chloro-, bromo-, and (ethylthio)dihydroisozazole inhibitors, and the results indicate that the chemical shift of the C-3 carbon is sensitive to the nature of the heteroatom. Subtraction of the natural-abundance 13C solid-state NMR spectrum of the enzyme from that of the enzyme inactivated by C-3-labeled chlorodihydroisoxazole reveals a broad peak at 156 ppm. The chemical shift of this peak is very close to that observed for a model 3-ethylthio compound and suggests the formation of a stable imino thioether enzyme adduct. Similar results were obtained for lyophilized enzyme adducts and for frozen solutions of the enzyme adduct in the absence and presence of Ca2+. We have also compared these results with those obtained by solution NMR on an aqueous solution of the enzyme-inhibitor complex. The 13C-labeled C-3 resonance was not observed in this case.
A new synthesis of di- and trisubstituted pyrroles was achieved by treating in situ generated vinylogous diazoesters and readily available nitriles with a catalytic amount of silver(I) antimony hexafluoride at room temperature. This method showcased the potential of utilizing silver(I) carbenoids in preparing heterocyclic compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.