We propose a framework to represent a partition that evolves under mean curvature flows and volume constraints. Its principle follows a phase-field representation for each region of the partition, as well as classical Allen–Cahn equations for its evolution. We focus on the evolution and on the optimization of problems involving high resolution data with many regions in the partition. In this context, standard phase-field approaches require a lot of memory (one image per region) and computation timings increase at least as fast as the number of regions. We propose a more efficient storage strategy with a dedicated multi-image representation that retains only significant phase field values at each discretization point. We show that this strategy alone is unfortunately inefficient with classical phase field models. This is due to non local terms and low convergence rate. We therefore introduce and analyze an improved phase field model that localizes each phase field around its associated region, and which fully benefits of our storage strategy. To demonstrate the efficiency of the new multiphase field framework, we apply it to the famous 3D honeycomb problem and the conjecture of Weaire–Phelan’s tiling.
We propose in this paper a new multiphase Cahn-Hilliard model with doubly degenerate mobilities. We prove by a formal asymptotic analysis that it approximates with second order accuracy the multiphase surface diffusion flow with mobility coefficients and surface tensions. To illustrate that it lends itself well to numerical approximation, we propose a simple and effective numerical scheme together with a very compact Matlab implementation. We provide the results of various numerical experiments to show the influence of mobility and surface tension coefficients. Thanks to its second order accuracy and its good suitability for numerical implementation, our model is very handy for tackling notably difficult surface diffusion problems. In particular, we show that it can be used very effectively to simulate numerically the dewetting of thin liquid tubes on arbitrary solid supports without requiring nonlinear boundary conditions.
This paper tackles the simulation of the wetting phenomenon using a phase field model. To this end, we extend to multiphase the Cahn-Hilliard model with doubly degenerate mobilities we introduced in [17] and we show that this extension still preserves the second order of approximation of the sharp limit. In a second part, we propose a simple and efficient numerical schemes that require only about 60 lines in Matlab. We then provide some numerical experiments illustrating the influence of mobility and surface tension coefficients. Finally, we explain how to apply our phase field model to approximate the wetting of a thin tube on different solid supports. .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.