Using older and in part fl awed data, Ruff (1989) suggested that thick sediment entering the subduction zone (SZ) smooths and strengthens the trench-parallel distribution of interplate coupling. This circumstance was conjectured to favor rupture continuation and the generation of high-magnitude (≥Mw8.0) interplate thrust (IPT) earthquakes. Using larger and more accurate compilations of sediment thickness and instrumental (1899 to January 2013) and pre-instrumental era (1700-1898) IPTs (n = 176 and 12, respectively), we tested if a compelling relation existed between where IPT earthquakes ≥Mw7.5 occurred and where thick (≥1.0 km) versus thin (≤1.0 km) sedimentary sections entered the SZ. Based on the new compilations, a statistically supported statement (see Summary and Conclusions) can be made that high-magnitude earthquakes are most prone to nucleate at well-sedimented SZs. For example, despite the 7500 km shorter global length of thicksediment trenches, they account for ~53% of instrumental era IPTs ≥Mw8.0, ~75% ≥Mw8.5, and 100% ≥Mw9.1. No megathrusts >Mw9.0 ruptured at thin-sediment trenches, whereas three occurred at thick-sediment trenches (1960 Chile Mw9.5, 1964 Alaska Mw9.2, and 2004 Sumatra Mw9.2). However, large Mw8.0-9.0 IPTs commonly (n = 23) nucleated at thin-sediment trenches. These earthquakes are associated with the subduction of low-relief ocean fl oor and where the debris of subduction erosion thickens the plate-separating subduction channel. The combination of low bathymetric relief and subduction erosion is inferred to also produce a smooth trench-parallel distribution of coupling posited to favor the characteristic lengthy rupturing of highmagnitude IPT earthquakes. In these areas subduction of a weak sedimentary sequence further enables rupture continuation.
A geophysical and geological survey conducted over the landward slope of the Middle America Trench offshore Guatemala, together with published well information from the outer shelf and Leg 67 drilling results from the toe of the slope indicate that imbricate slices of oceanic crust were emplaced in the landward slope offshore Guatemala in the Paleocene or early Eocene. Since that time, sediment apparently has accumulated on the landward slope primarily as a sediment apron blanketing an older, tectonically deformed prism of sediments and crustal slices. There is little or no evidence for continued tectonic accretion seaward of the volcanic arc during the late Tertiary.Seismic reflection and refraction surveys have revealed landward-dipping reflections that are associated with high compressional wave velocities, large magnetic anomalies, and basic-ultrabasic rock. Multifold seismic reflection data reveal that the edge of the continental shelf is a structural high of Cretaceous and Paleocene rock against which Eocene and younger sediments of the shelf basin onlap and pinch out. The upper part of the continental slope is covered in most places by a 0.5-to 1.0-km-thick sediment apron with seismic velocities of 1.8 to 2.6 km/s. The base of the sediment apron commonly coincides with the base of a gas hydrate zone where water is 1500 to 2300 meters deep. Immediately beneath the sediment apron an irregular surface is the top of an interval with velocities greater than 4 km/s. Within this interval, landward-dipping reflections are traced to about 6 km below sea level. These reflections coincide with the top of seismic units having oceanic crust velocities and thicknesses.The sediment apron pinches out on the lower continental slope where refraction results indicate only a few hundred meters of 2.5-km/s material lying over about a kilometer of 3.0-km/s sediment. Between the 3.0-km/s sediment and a landward continuation of ocean crust, an interval of 4.1-to 4.7-km/s material occurs that thins seaward. Near the interface between the 4 +-km/s material and oceanic crust with velocities of 6.5 to 6.8 km/s, reflection records indicate a landward-dipping horizon that can be followed about 30 km landward from the Trench axis.Coring on the continental slope returned gravels of unweathered metamorphosed basalt, serpentine, and chert, unlike rock generally found onshore in Guatemalan drainage basins feeding the Pacific coast. These gravels, which were probably derived from local subsea outcrops, are similar to lithologies found on the Nicoya Peninsula farther south.A canyon cut in the outer continental shelf and upper continental slope may be associated with faulting, as indicated by an offset of linear magnetic anomalies at the shelf edge.In a general way our observations are consistent with previous suggestions that slices of rock, some of which may have oceanic crustal lithologies, are imbedded in the upper slope. However, the reflection data collected for the Deep Sea Drilling Project site survey do not show the many conc...
For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod For more information on the USGS-the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1-888-ASK-USGS (1-888-275-8747).To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce any copyrighted items must be secured from the copyright owner. AbstractDuring the past several years, devastating tsunamis were generated along subduction zones in Indonesia, Chile, and most recently Japan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.