Eukaryotic cells have a layer of heterochromatin at the nuclear periphery. To investigate mechanisms regulating chromatin distribution, we analyzed heterochromatin organization in different tissues and species, including mice with mutations in the lamin B receptor (Lbr) and lamin A (Lmna) genes that encode nuclear envelope (NE) proteins. We identified LBR- and lamin-A/C-dependent mechanisms tethering heterochromatin to the NE. The two tethers are sequentially used during cellular differentiation and development: first the LBR- and then the lamin-A/C-dependent tether. The absence of both LBR and lamin A/C leads to loss of peripheral heterochromatin and an inverted architecture with heterochromatin localizing to the nuclear interior. Myoblast transcriptome analyses indicated that selective disruption of the LBR- or lamin-A-dependent heterochromatin tethers have opposite effects on muscle gene expression, either increasing or decreasing, respectively. These results show how changes in NE composition contribute to regulating heterochromatin positioning, gene expression, and cellular differentiation during development.
Downregulation of E-cadherin is a crucial event for epithelial to mesenchymal transition (EMT) in embryonic development and cancer progression. Using the EpFosER mammary tumour model we show that during EMT, upregulation of the transcriptional regulator deltaEF1 coincided with transcriptional repression of E-cadherin. Ectopic expression of deltaEF1 in epithelial cells was sufficient to downregulate E-cadherin and to induce EMT. Analysis of E-cadherin promoter activity and chromatin immunoprecipitation identified deltaEF1 as direct transcriptional repressor of E-cadherin. In human cancer cells, transcript levels of deltaEF1 correlated directly with the extent of E-cadherin repression and loss of the epithelial phenotype. The protein was enriched in nuclei of human cancer cells and physically associated with the E-cadherin promoter. RNA interference-mediated downregulation of deltaEF1 in cancer cells was sufficient to derepress E-cadherin expression and restore cell to cell adhesion, suggesting that deltaEF1 is a key player in late stage carcinogenesis.
Epithelial to mesenchymal transition (EMT) is implicated in the progression of primary tumours towards metastasis and is likely caused by a pathological activation of transcription factors regulating EMT in embryonic development. To analyse EMT-causing pathways in tumourigenesis, we identified transcriptional targets of the E-cadherin repressor ZEB1 in invasive human cancer cells. We show that ZEB1 repressed multiple key determinants of epithelial differentiation and cell-cell adhesion, including the cell polarity genes Crumbs3, HUGL2 and Pals1-associated tight junction protein. ZEB1 associated with their endogenous promoters in vivo, and strongly repressed promotor activities in reporter assays. ZEB1 downregulation in undifferentiated cancer cells by RNA interference was sufficient to upregulate expression of these cell polarity genes on the RNA and protein level, to re-establish epithelial features and to impair cell motility in vitro. In human colorectal cancer, ZEB1 expression was limited to the tumour-host interface and was accompanied by loss of intercellular adhesion and tumour cell invasion. In invasive ductal and lobular breast cancer, upregulation of ZEB1 was stringently coupled to cancer cell dedifferentiation. Our data show that ZEB1 represents a key player in pathologic EMTs associated with tumour progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.