Downregulation of E-cadherin is a crucial event for epithelial to mesenchymal transition (EMT) in embryonic development and cancer progression. Using the EpFosER mammary tumour model we show that during EMT, upregulation of the transcriptional regulator deltaEF1 coincided with transcriptional repression of E-cadherin. Ectopic expression of deltaEF1 in epithelial cells was sufficient to downregulate E-cadherin and to induce EMT. Analysis of E-cadherin promoter activity and chromatin immunoprecipitation identified deltaEF1 as direct transcriptional repressor of E-cadherin. In human cancer cells, transcript levels of deltaEF1 correlated directly with the extent of E-cadherin repression and loss of the epithelial phenotype. The protein was enriched in nuclei of human cancer cells and physically associated with the E-cadherin promoter. RNA interference-mediated downregulation of deltaEF1 in cancer cells was sufficient to derepress E-cadherin expression and restore cell to cell adhesion, suggesting that deltaEF1 is a key player in late stage carcinogenesis.
The molecular mechanisms governing invasive differentiation of human trophoblasts remain largely elusive. Here, we investigated the role of Wnt--catenin-T-cell factor (TCF) signaling in this process. Reverse transcriptase-polymerase chain reaction and Western blot analyses demonstrated expression of Wnt ligands, frizzled receptors, LRP-6, and TCF-3/4 transcription factors in total placenta and different trophoblast cell models. Immunohistochemistry of placental tissues and differentiating villous explant cultures showed that expression of TCF-3/4 strongly increased in invading trophoblasts. Some of these cells also accumulated dephosphorylated -catenin in the nucleus. Wnt3A treatment of primary cytotrophoblasts and SGHPL-5 cells induced activity of TCF-luciferase reporters. Accordingly, the ligand provoked interaction of TCF-3/4 with -catenin as assessed in electrophoretic mobility shift assays (EMSAs) and upregulation of Wnt/TCF target genes as observed by Western blot analyses. Wnt3A stimulated trophoblast migration and invasion through Matrigel, which could be blocked by addition of Dickkopf-1, mediating inhibition of canonical Wnt signaling. Dickkopf-1 also reduced basal migration, invasion, and proliferation of cytotrophoblasts, suggesting expression of endogenous Wnt ligand(s). Immunohistochemistry revealed that the percentage of extravillous trophoblasts containing nuclear -catenin was significantly higher in placentas of complete hydatidiform mole pregnancies as compared to normal placentas. Thus, canonical Wnt signaling may promote invasive trophoblast differentiation, and exaggerated activation of the pathway could contribute to trophoblastic hyperplasia and local invasion.
The family of secreted Wingless ligands plays major roles in embryonic development, stem cell maintenance, differentiation and tissue homeostasis. Accumulating evidence suggests that the canonical Wnt pathway involving nuclear recruitment of β-catenin and activation of Wntdependent transcription factors is also critically involved in development and differentiation of the diverse reproductive tissues. Here, we summarise our present knowledge about expression, regulation and function of Wnt ligands and their frizzled receptors in murine and human endometrial and placental cell types. In mice, Wnt signalling promotes early trophoblast lineage development, blastocyst activation, implantation and chorion-allantois fusion. Moreover, different Wnt ligands play essential roles in the development of the murine uterine tract, in cycling endometrial cells and during decidualisation. In humans, estrogen-dependent endometrial cell proliferation, decidualisation, trophoblast attachment and invasion were shown to be controlled by the particular signalling pathway. Failures in Wnt signalling are associated with infertility, endometriosis, endometrial cancer and gestational diseases such as complete mole placentae and choriocarcinomas. However, our present knowledge is still scarce due to the complexity of the Wnt network involving numerous ligands, receptors and non-canonical pathways. Hence, much remains to be learned about the role of different Wnt signalling cascades in reproductive cell types and their changes under pathological conditions. KeywordsPlacenta; Trophoblast; Endometrium; Wnt General role of Wnt signallingA small number of signalling pathways are critically involved in the early development of complex, multi-cellular organisms controlling early axis formation, limb patterning and organogenesis. Such crucial and conserved signalling pathways include Hedgehog, transforming growth factor β(TGF-β)/bone morphogenetic protein (BMP), Notch and Wingless (Wnt) which are active from drosophila to human [1][2][3]. Wnt ligands are secreted, palmitoylated glycoproteins playing central roles in embryogenesis and tissue homeostasis of adult organisms [3,4]. Maintenance of stem cells and their differentiation processes are regulated by the particular factors [5][6][7][8]. Historically, it was shown that the murine protooncogene Int-1 shares the same origin with the drosophila segment polarity gene Wingless leading to the creation of the term Wnt (combination of Wg (Wingless) and Int) [9]. Canonical Wnt pathwayThe central player in canonical Wnt signalling is β-catenin. In unstimulated cells β-catenin is mainly located to adherens junctions where it is critically involved in maintaining epithelial integrity by binding to E-cadherin and α-catenin. In the absence of Wnt ligands (off-state) excess, cytoplasmic β-catenin is complexed with APC (adenomatous polyposis coli) and Axin both facilitating the phosphorylation of the protein by casein kinase Iα (CKIα) and glycogen synthase kinase 3β (GSK-3β) (Fig. 1). This provokes ...
Invasion of human trophoblasts is promoted through activation of wingless (Wnt) signaling, suggesting a role of the pathway in placental development and morphogenesis. However, details on the process such as involvement of canonical and/or noncanonical Wnt signaling cascades as well as their target genes are largely unknown. Hence, signal transduction via canonical Wnt signaling or phosphatidylinositide 3-kinase (PI3K)/AKT and their cross talk as well as trophoblast-specific protease expression were investigated in trophoblastic SGHPL-5 cells and primary extravillous trophoblasts purified from first-trimester placentas. Western blot analyses revealed that the recombinant Wnt ligand Wnt-3A increased phosphorylation of AKT and the downstream kinase glycogen synthase kinase (GSK)-3beta as well as accumulation of activated, nuclear beta-catenin. In accordance, luciferase expression of a canonical Wnt/TCF reporter and cell migration in first-trimester villous explant cultures and of SGHPL-5 cells were stimulated. Chemical inhibition of PI3K abolished Wnt-dependent phosphorylation of AKT and GSK-3beta and trophoblast motility but did not affect appearance of activated beta-catenin or Wnt/TCF reporter activity. In contrast, inhibition of the canonical pathway through soluble Dickkopf-1 did not influence AKT and GSK-3beta phosphorylation but reduced Wnt reporter activity, accumulation of active beta-catenin, and cell migration. Both inhibitors decreased Wnt-3A-induced secretion of pro- and active matrix metalloproteinase-2 from SGHPL-5 cells and pure EVT. The data suggest that Wnt-3A may activate canonical Wnt signaling and PI3K/AKT through distinct receptors. The two signaling cascades act independently in trophoblasts; however, both pathways promote Wnt-dependent migration and the release of matrix metalloproteinase-2, which has been identified as novel Wnt target in invasive trophoblasts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.