This letter presents a method aimed at quantifying the dimensions of the heat-affected zone (HAZ), produced during nanosecond and femtosecond laser–matter interactions. According to this method, 0.1 μm thick Al samples were microdrilled and observed by a transmission electronic microscopy technique. The holes were produced at laser fluences above the ablation threshold in both nanosecond and femtosecond regimes (i.e., 5 and 2 J/cm2, respectively). The grain size in the samples was observed near the microholes. The main conclusion is that a 40 μm wide HAZ is induced by the nanosecond pulses, whereas the femtosecond regime does not produce any observable HAZ. It turns out that the width of the femtosecond HAZ is less than 2 μm, which is our observation limit.
Summary
A detailed accuracy analysis of electron backscatter diffraction (EBSD) elastic strain measurement has been carried out using both simulated and experimental patterns. Strains are determined by measuring shifts between two EBSD patterns (one being the reference) over regions of interest (ROI) using an iterative cross‐correlation algorithm. An original minimization procedure over 20 regions of interests gives a unique solution for the eight independent components of the deviatoric displacement gradient tensor. It is shown that this method leads to strain measurements on simulated patterns with an accuracy better than 10−4. The influence of the projection parameters is also investigated. The accuracy assessment is illustrated by two worked examples: (i) four‐point bending of a silicon single crystal and (ii) Si1 –xGex layers on a Si substrate. Experimental results are compared with finite‐element simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.