Many algorithms have been proposed that create a path for a robot in an environment with obstacles. Most methods are aimed at finding a solution. However, for many applications, the path must be of a good quality as well. That is, a path should be short and should keep some amount of minimum clearance to the obstacles. Traveling along such a path reduces the chances of collisions due to the difficulty of measuring and controlling the precise position of the robot. This paper reports a new technique, called Partial shortcut, which decreases the path length. While current methods have difficulties in removing all redundant motions, the technique efficiently removes these motions by interpolating one degree of freedom at a time. Two algorithms are also studied that increase the clearance along paths. The first one is fast but can only deal with rigid, translating bodies. The second algorithm is slower but can handle a broader range of robots, including three-dimensional free-flying and articulated robots, which may reside in arbitrary high-dimensional configuration spaces. A big advantage of these algorithms is that clearance along paths can now be increased efficiently without using complex data structures and algorithms. Finally, we combine the two criteria and show that highquality paths can be obtained for a broad range of robots.
Abstract-A central problem of applications dealing with virtual environments is planning a collision-free path for a character. Since environments and their characters are growing more realistic, a character's path needs to be visually convincing, meaning that the path is smooth, short, has some clearance to the obstacles in the environment, and avoids other characters. Up to now, it has proved difficult to meet these criteria simultaneously and in real-time.We introduce a new data structure, i.e. the Explicit Corridor Map, which allows creating the shortest path, the path that has the largest amount of clearance, or any path in between. Besides being efficient, the corresponding algorithms are surprisingly simple. By integrating the data structure and algorithms into the Indicative Route Method, we show that visually convincing short paths can be obtained in real-time.
Abstract. The probabilistic roadmap approach is one of the leading motion planning techniques. Over the past eight years the technique has been studied by many different researchers. This has led to a large number of variants of the approach, each with its own merits. It is difficult to compare the different techniques because they were tested on different types of scenes, using different underlying libraries, implemented by different people on different machines. In this paper we provide a comparative study of a number of these techniques, all implemented in a single system and run on the same test scenes and on the same computer. In particular we compare collision checking techniques, basic sampling techniques, and node adding techniques. The results should help future users of the probabilistic roadmap planning approach to choose the correct techniques.
In many virtual environment applications, paths have to be planned for characters to traverse from a start to a goal position in the virtual world while avoiding obstacles. Contemporary applications require a path planner that is fast (to ensure real-time interaction with the environment) and flexible (to avoid local hazards such as small and dynamic obstacles). In addition, paths need to be smooth and short to ensure natural looking motions.Current path planning techniques do not obey these criteria simultaneously. For example, A* approaches generate unnatural looking paths, potential field-based methods are too slow, and sampling-based path planning techniques are inflexible. We propose a new technique, the Corridor Map Method (CMM), which satisfies all the criteria. In an off-line construction phase, the CMM creates a system of collision-free corridors for the static obstacles in an environment. In the query phase, paths can be planned inside the corridors for different types of characters while avoiding dynamic obstacles. Experiments show that high-quality paths for single characters or groups of characters can be obtained in real-time.
Many motion planning techniques, like the probabilistic roadmap method (PRM), generate low quality paths. In this paper, we will study a number of different quality criteria on paths in particular length and clearance. We will describe a number of techniques to improve the quality of paths. These are based on a new approach to increase the path clearance. Experiments showed that the heuristics were able to generate paths of a much higher quality than previous approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.