Nuclear fusion using magnetic confinement, in particular in the tokamak configuration, is a promising path towards sustainable energy. A core challenge is to shape and maintain a high-temperature plasma within the tokamak vessel. This requires high-dimensional, high-frequency, closed-loop control using magnetic actuator coils, further complicated by the diverse requirements across a wide range of plasma configurations. In this work, we introduce a previously undescribed architecture for tokamak magnetic controller design that autonomously learns to command the full set of control coils. This architecture meets control objectives specified at a high level, at the same time satisfying physical and operational constraints. This approach has unprecedented flexibility and generality in problem specification and yields a notable reduction in design effort to produce new plasma configurations. We successfully produce and control a diverse set of plasma configurations on the Tokamak à Configuration Variable1,2, including elongated, conventional shapes, as well as advanced configurations, such as negative triangularity and ‘snowflake’ configurations. Our approach achieves accurate tracking of the location, current and shape for these configurations. We also demonstrate sustained ‘droplets’ on TCV, in which two separate plasmas are maintained simultaneously within the vessel. This represents a notable advance for tokamak feedback control, showing the potential of reinforcement learning to accelerate research in the fusion domain, and is one of the most challenging real-world systems to which reinforcement learning has been applied.
Batch reinforcement learning methods provide a powerful framework for learning efficiently and effectively in autonomous robots. The paper reviews some recent work of the authors aiming at the successful application of reinforcement learning in a challenging and complex domain. It discusses several variants of the general batch learning framework, particularly tailored to the use of multilayer perceptrons to approximate value functions over continuous state spaces. The batch learning framework is successfully used to learn crucial skills in our soccer-playing robots participating in the RoboCup competitions. This is demonstrated on three different case studies.
Technical process control is a highly interesting area of application serving a high practical impact. Since classical controller design is, in general, a demanding job, this area constitutes a highly attractive domain for the application of learning approaches-in particular, reinforcement learning (RL) methods. RL provides concepts for learning controllers that, by cleverly exploiting information from interactions with the process, can acquire highquality control behaviour from scratch.This article focuses on the presentation of four typical benchmark problems whilst highlighting important and challenging aspects of technical process control: nonlinear dynamics; varying set-points; long-term dynamic effects; influence of external variables; and the primacy of precision. We propose performance measures for controller quality that apply both to classical control design and learning controllers, measuring precision, speed, and stability of the controller. A second set of key-figures describes the performance from the perspective of a learning approach while providing information about the efficiency of the method with respect to the learning effort needed. For all four benchmark problems, extensive and detailed information is provided with which to carry out the evaluations outlined in this article.A close evaluation of our own RL learning scheme, NFQCA (Neural Fitted Q Iteration with Continuous Actions), in acordance with the proposed scheme on all four benchmarks, thereby provides performance figures on both control quality and learning behavior.
The successful application of general reinforcement learning algorithms to real-world robotics applications is often limited by their high data requirements. We introduce Regu larized Hierarchical Policy Optimization (RHPO) to improve data-efliciency for domains with multiple dominant tasks and ultimately reduce required platform time. To this end, we employ compositional inductive biases on multiple levels and corresponding mechanisms for sharing off-policy transition data across low-level controllers and tasks as well as scheduling of tasks. The presented algorithm enables stable and fast learning for complex, real-world domains in the parallel multitask and sequential transfer case. We show that the investigated types of hierarchy enable positive transfer while partially mitigating negative interference and evaluate the benefits of additional incentives for efficient, compositional task solutions in single task domains. Finally, we demonstrate substantial data-efficiency and final performance gains over competitive baselines in a week-long, physical robot stacking experiment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.