Multiple sclerosis (MS) is the most common autoimmune disease affecting the central nervous system. It is characterized by autoreactive T cells that induce demyelination and neuronal degradation. Treatment options are still limited and several MS medications need to be administered by parenteral application but are modestly effective. Oral active drugs such as fingolimod have been weighed down by safety concerns. Consequently, there is a demand for novel, especially orally active therapeutics. Nature offers an abundance of compounds for drug discovery. Recently, the circular plant peptide kalata B1 was shown to silence T-cell proliferation in vitro in an IL-2-dependent mechanism. Owing to this promising effect, we aimed to determine in vivo activity of the cyclotide [T20K]kalata B1 using the MS mouse model experimental autoimmune encephalomyelitis (EAE). Treatment of mice with the cyclotide resulted in a significant delay and diminished symptoms of EAE by oral administration. Cyclotide application substantially impeded disease progression and did not exhibit adverse effects. Inhibition of lymphocyte proliferation and the reduction of proinflammatory cytokines, in particular IL-2, distinguish the cyclotide from other marketed drugs. Considering their stable structural topology and oral activity, cyclotides are candidates as peptide therapeutics for pharmaceutical drug development for treatment of T-cell-mediated disorders.cyclic peptides | multiple sclerosis | immunopharmacology | plant natural product | drug discovery
ABSTRACT:Cyclotides are a unique class of ribosomally synthesized cysteine-rich miniproteins characterized by a head-to-tail cyclized backbone and three conserved disulfide-bonds in a knotted arrangement. Originally they were discovered in the coffee-family plant Oldenlandia affinis (Rubiaceae) and have since been identified in several species of the violet, cucurbit, pea, potato, and grass families. However, the identification of novel cyclotide-containing plant species still is a major challenge due to the lack of a rapid and accurate analytical workflow in particular for large sam-
Cyclotides are plant-derived mini proteins. They are genetically
encoded as precursor proteins that become post-translationally modified
to yield circular cystine-knotted molecules. Because of this structural
topology cyclotides resist enzymatic degradation in biological fluids,
and hence they are considered as promising lead molecules for pharmaceutical
applications. Despite ongoing efforts to discover novel cyclotides
and analyze their biodiversity, it is not clear how many individual
peptides a single plant specimen can express. Therefore, we investigated
the transcriptome and cyclotide peptidome of Viola tricolor. Transcriptome mining enabled the characterization of cyclotide
precursor architecture and processing sites important for biosynthesis
of mature peptides. The cyclotide peptidome was explored by mass spectrometry
and bottom-up proteomics using the extracted peptide sequences as
queries for database searching. In total 164 cyclotides were discovered
by nucleic acid and peptide analysis in V. tricolor. Therefore, violaceous plants at a global scale may be the source
to as many as 150 000 individual cyclotides. Encompassing the
diversity of V. tricolor as a combinatorial library
of bioactive peptides, this commercially available medicinal herb
may be a suitable starting point for future bioactivity-guided screening
studies.
Proteases have an important role in homeostasis, and dysregulation of protease function can lead to pathogenesis. Therefore, proteases are promising drug targets in cancer, inflammation, and neurodegenerative disease research. Although there are well-established pharmaceuticals on the market, drug development for proteases is challenging. This is often caused by the limited selectivity of currently available lead compounds. Proteinaceous plant protease inhibitors are a diverse family of (poly)peptides that are important to maintain physiological homeostasis and to serve the innate defense machinery of the plant. In this review, we provide an overview of the diversity of plant peptide- and protein-based protease inhibitors (PIs), provide examples of such compounds that target human proteases, and discuss opportunities for these molecules in protease drug discovery and development.
HighlightsT cell signaling has a pivotal role in autoimmunity and immunosuppression.Immunosuppressive pharmaceuticals often exhibit severe side-effects in patients.Gene-encoded peptides have potential as immunosuppressive drug candidates.Cyclotides are stable peptides that offer enhanced oral administration properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.