Periodate, a platform oxidizer, can be electrochemically recycled in a self-cleaning process. Electrosynthesis of periodate is well established at boron-doped diamond (BDD) anodes. However, recovered iodate and other iodo species for recycling can contain traces of organic impurities from previous applications. For the first time, it was shown that the organic impurities do not hamper the electrochemical re-oxidation of used periodate. In a hydroxyl-mediated environment, the organic compounds form CO 2 and H 2 O during the degradation process. This process is often referred to as "cold combustion" and provides orthogonal conditions to periodate synthesis. To demonstrate the strategy, different dyes, pharmaceutically active ingredients, and iodine compounds were added as model contaminations into the process of electrochemical periodate production. UV/ Vis spectroscopy, NMR spectroscopy, and mass spectrometry (MS) were used to monitor the degradation of organic molecules, and liquid chromatography-MS was used to control the purity of periodate. As a representative example, dimethyl 5-iodoisophthalate (2 mm), was degraded in 90, 95, and 99 % while generating 0.042, 0.054, and 0.082 kilo equiv. of periodate, respectively. In addition, various organic iodo compounds could be fed into the periodate generation for upcycling such iodocontaining waste, for example, contrast media.
Quantum dots (QDs) are considered for devices like light-emitting diodes (LEDs) and photodetectors as a result of their tunable optoelectronic properties. To utilize the full potential of QDs for optoelectronic applications, control over the charge carrier density is vital. However, controlled electronic doping of these materials has remained a long-standing challenge, thus slowing their integration into optoelectronic devices. Electrochemical doping offers a way to precisely and controllably tune the charge carrier concentration as a function of applied potential and thus the doping levels in QDs. However, the injected charges are typically not stable after disconnecting the external voltage source because of electrochemical side reactions with impurities or with the surfaces of the QDs. Here, we use photopolymerization to covalently bind polymerizable electrolyte ions to polymerizable solvent molecules after electrochemical charge injection. We discuss the importance of using polymerizable dopant ions as compared to nonpolymerizable conventional electrolyte ions such as LiClO 4 when used in electrochemical doping. The results show that the stability of charge carriers in QD films can be enhanced by many orders of magnitude, from minutes to several weeks, after photochemical ion fixation. We anticipate that this novel way of stable doping of QDs will pave the way for new opportunities and potential uses in future QD electronic devices.
Chemical production is a significant contributor to global climate change, which expedites the growing demand for transitioning to more sustainable and climate‐friendly methodologies. Ideally this should include high compatibility with the fluctuating electricity supply which results from renewable energy sources in the electrical grid. Here we show an electrochemical path for the 3‐propyladipic acid synthesis from 4‐propylcyclohexanol implementing a semi‐technical electrochemical continuously stirred tank reactor. Following a Design of Experiments approach, we found a strong influence of the biphasic electrolyte mixing and the continuous feeding in of the substrate. By switching to an electrolyte recirculation mode and efficient mixing, the isolated product yield could be increased up to 31 % for a 10 L total reaction volume, indicating the potential for further scale‐up into the technical range. This reaction proceeds while forming several by‐products, which have not been fully described yet. A proposal for the formation mechanism is included.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.