The sound velocity and density of suspensions of large unilamellar liposomes from dimyristoylphosphatidylcholine with admixed cholesterol have been measured as a function of temperature around the chain melting temperature of the phospholipid. The cholesterol-to-phospholipid molar ratio xc has been varied over a wide range (0 = xc = 0.5). The temperature dependence of the sound velocity number, of the apparent specific partial volume of the phospholipid, and of the apparent specific adiabatic compressibility have been derived from the measured data. These data are particularly discussed with respect to the volume fluctuations within the samples. A theoretical relation between the compressibility and the excess heat capacity of the bilayer system has been derived. Comparison of the compressibilities (and sound velocity numbers) with heat capacity traces display the close correlation between these quantities for bilayer systems. This correlation appears to be very useful as it allows some of the mechanical properties of membrane systems to be calculated from the specific heat capacity data and vice versa.
Although sterol-phospholipid interactions have been of interest for many years now, a complete thermodynamic profile of these systems is still missing. To contribute to a better understanding of the thermodynamic functions of these systems, we determined isothermal compressibility coefficient data for dipalmitoylphosphocholine (DPPC) and DPPC-containing cholesterol and ergosterol vesicles by means of molecular acoustics (ultrasound velocimetry and densimetry) and differential scanning and pressure perturbation calorimetric techniques. A particular focus was on the influence of the differential structural properties of the two sterols on the thermodynamic properties of lipid bilayers, and on the nature of the critical point region of phospholipid-sterol systems by determining thermodynamic fluctuation parameters. Contrary to significant changes in conformational and dynamical properties of the DPPC-sterol membranes, no marked differences were found in the various thermodynamic properties studied, including the adiabatic (beta(S)(lipid)) and isothermal (beta(T)(lipid)) compressibility, as well as the volume fluctuations. Differences in beta(T)(lipid) and beta(S)(lipid) become dramatic in the gel-fluid transition region only, due to a significant degree of slow relaxational processes in the microsecond time range in the transition region. Our data show no evidence for the existence of a typical critical point phenomenon in the concentration and temperature range where a critical point in the DPPC-sterol phase diagram is expected to appear. Hence, on a macroscopic level, it seems more appropriate to describe the sterol-phospholipid binary mixtures in the liquid-ordered/liquid-disordered coexistence region as a phase region consisting essentially of small nanodomains only. Such small-domain dimensions, with a series of particular properties such as increased line energy, spontaneous curvature, and limited lifetime, seem also to be typical of raftlike domains in cell membranes.
Chloride is an important cofactor in photosynthetic water oxidation. It can be replaced by bromide with retention of the oxygen-evolving activity of photosystem II (PSII). Binding of bromide to the Mn(4)Ca complex of PSII in its dark-stable S(1) state was studied by X-ray absorption spectroscopy (XAS) at the Br K-edge in Cl(-)-depleted and Br(-)-substituted PSII membrane particles from spinach. The XAS spectra exclude the presence of metal ions in the first and second coordination spheres of Br(-). EXAFS analysis provided tentative evidence of at least one metal ion, which may be manganese or calcium, at a distance of approximately 5 A to Br(-). The native Cl(-) ion may bind at a similar distance. Accordingly, water oxidation may not require binding of a halide directly to the metal ions of the Mn complex in its S(1) state.
The energetics of the individual reaction steps in the catalytic cycle of photosynthetic water oxidation at the Mn(4)Ca complex of photosystem II (PSII) are of prime interest. We studied the electron transfer reactions in oxygen-evolving PSII membrane particles from spinach by a photothermal beam deflection technique, allowing for time-resolved calorimetry in the micro- to millisecond domain. For an ideal quantum yield of 100%, the enthalpy change, DeltaH, coupled to the formation of the radical pair Y(Z)(.+)Q(A)(-) (where Y(Z) is Tyr-161 of the D1 subunit of PSII) is estimated as -820 +/- 250 meV. For a lower quantum yield of 70%, the enthalpy change is estimated to be -400 +/- 250 meV. The observed nonthermal signal possibly is due to a contraction of the PSII protein volume (apparent DeltaV of about -13 A(3)). For the first time, the enthalpy change of the O(2)-evolving transition of the S-state cycle was monitored directly. Surprisingly, the reaction is only slightly exergonic. A value of DeltaH(S(3)-->S(0)) of -210 meV is estimated, but also an enthalpy change of zero is within the error range. A prominent nonthermal photothermal beam deflection signal (apparent DeltaV of about +42 A(3)) may reflect O(2) and proton release from the manganese complex, but also reorganization of the protein matrix.
The recent crystallographic structure at 3.0 A resolution of PSII from Thermosynechococcus elongatus has revealed a cavity in the protein which connects the membrane phase to the binding pocket of the secondary plastoquinone Q(B). The cavity may serve as a quinone diffusion pathway. By fluorescence methods, electron transfer at the donor and acceptor sides was investigated in the same membrane-free PSII core particle preparation from T. elongatus prior to and after crystallization; PSII membrane fragments from spinach were studied as a reference. The data suggest selective enrichment of those PSII centers in the crystal that are intact with respect to O(2) evolution at the manganese-calcium complex of water oxidation and with respect to the integrity of the quinone binding site. One and more functional quinone molecules (per PSII monomer) besides of Q(A) and Q(B) were found in the crystallized PSII. We propose that the extra quinones are located in the Q(B) cavity and serve as a PSII intrinsic pool of electron acceptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.