Active solute transport mediated by molecular motors across porous membranes is a well-recognized mechanism for transport across the cell membrane. In contrast, active transport mediated by mechanical loading of porous media is a non-intuitive mechanism that has only been predicted recently from theory, but not yet observed experimentally. This study uses agarose hydrogel and dextran molecules as a model experimental system to explore this mechanism. Results show that dynamic loading can enhance the uptake of dextran by a factor greater than 15 over passive diffusion, for certain combinations of gel concentration and dextran molecular weight. Upon cessation of loading, the concentration reverts back to that achieved under passive diffusion. Thus, active solute transport in porous media can indeed be mediated by cyclical mechanical loading.
This study reports experimental measurements of solute diffusivity and partition coefficient for various solute concentrations and gel porosities, and proposes novel constitutive relations to describe these observed values. The longer-term aim is to explore the theoretical ramifications of accommodating variations in diffusivity and partition coefficient with solute concentration and tissue porosity, and investigate whether they might suggest novel mechanisms not previously recognized in the field of solute transport in deformable porous media. The study implements a model transport system of agarose hydrogels to investigate the effect of solute concentration and hydrogel porosity on the transport of dextran polysaccharides. The proposed phenomenological constitutive relations are shown to provide better fits of experimental results than prior models proposed in the literature based on the microstructure of the gel. While these constitutive models were developed for the transport of dextran in agarose hydrogels, it is expected that they may also be applied to the transport of similar molecular weight solutes in other porous media. This quantification can assist in the application of biophysical models that describe biological transport in deformable tissues, as well as the cell cytoplasm.
Due to the dense organization of organelles, cytoskeletal elements, and protein complexes that make up the intracellular environment, it is likely that membrane-permeant solutes may be excluded from a fraction of the interstitial space of the cytoplasm via steric restrictions, electrostatic interactions, and other long-range intermolecular forces. This study investigates the hypothesis that the intracellular partitioning of membrane-permeant solutes manifests itself as a partial volume recovery in response to hyperosmotic loading, based on prior theoretical and biomimetic experimental studies. Osmotic loading experiments are performed on immature bovine chondrocytes using culture conditions where regulatory volume responses are shown to be insignificant. Osmotic loading with membrane-permeant glycerol (92 Da) and urea (60 Da) are observed to produce partial volume recoveries consistent with the proposed hypothesis, whereas loading with 1,2-propanediol (76 Da) produces complete volume recovery. Combining these experimental results with the previous theoretical framework produces a measure for the intracellular partition coefficient of each of these solutes. At 1000 mOsm, 1,2-propanediol is the only osmolyte to yield a partition coefficient not statistically different from unity, kappa(p)(i) = 1.00 +/- 0.02. For glycerol, the partition coefficient increases with osmolarity from kappa(p)(i) = 0.48 +/- 0.19 at 200 mOsm to kappa(p)(i) = 0.80 +/- 0.07 at 1000 mOsm; urea exhibits no such dependence, with an average value of kappa(p)(i) = 0.87 +/- 0.07 for all osmolarities from 200 to 1000 mOsm. The finding that intracellular partitioning of membrane-permeant solutes manifests itself as a partial volume recovery under osmotic loading offers a simple method for characterizing the partition coefficient. These measurements suggest that significant partitioning may occur even for small membrane-permeant osmolytes. Furthermore, a positive correlation is observed, suggesting that a solute's cytoplasmic partition coefficient increases with increasing hydrophobicity.
Solute transport in biological tissues is a fundamental process necessary for cell metabolism. In connective soft tissues, such as articular cartilage, cells are embedded within a dense extracellular matrix that hinders the transport of solutes. However, according to a recent theoretical study (Mauck et al., 2003, J. Biomech. Eng. 125, 602-614), the convective motion of a dynamically loaded porous solid matrix can also impart momentum to solutes, pumping them into the tissue and giving rise to concentrations which exceed those achived under passive diffusion alone. In this study, the theoretical predictions of this model are verified against experimental measurements. The mechanical and transport properties of an agarose-dextran model system were characterized from independent measurements and substituted into the theory to predict solute uptake or desorption under dynamic mechanical loading for various agarose concentrations and dextran molecular weights, as well as different boundary and initial conditions. In every tested case, agreement was observed between experiments and theoretical predictions as assessed by coefficients of determination ranging from R 2 =0.61 to 0.95. These results provide strong support for the hypothesis that dynamic loading of a deformable porous tissue can produce active transport of solutes via a pumping mechanisms mediated by momentum exchange between the solute and solid matrix.
The potential influence of mechanical loading on transvascular transport in vascularized soft tissues has not been explored extensively. This experimental investigation introduced and explored the hypothesis that dynamic mechanical loading can pump solutes out of blood vessels and into the surrounding tissue, leading to faster uptake and higher solute concentrations than could otherwise be achieved under unloaded conditions. Immature epiphyseal cartilage was used as a model tissue system, with fluorescein (332 Da), dextran (3, 10 and 70 kDa) and transferrin (80 kDa) as model solutes. Cartilage disks were either dynamically loaded (±10% compression over a 10% static offset strain, at 0.2 Hz) or maintained unloaded in solution for up to 20 hours. Results demonstrated statistically significant solute uptake in dynamically loaded (DL) explants relative to passive diffusion (PD) controls for all solutes except unbound fluorescein, as evidenced by the DL:PD concentration ratios after 20 hours (1.0 ± 0.2, 2.4 ± 1.1, 6.1 ± 3.3, 9.0 ± 4.0, and 5.5±1.6 for fluorescein, 3, 10, and 70 kDa dextran, and transferrin). Significant uptake enhancements were also observed within the first 30 seconds of loading. Termination of dynamic loading produced dissipation of enhanced solute uptake back to PD control values. Confocal images confirmed that solute uptake occurred from cartilage canals into their surrounding extracellular matrix. The incidence of this loading-induced transvascular solute pumping mechanism may significantly alter our understanding of the interaction of mechanical loading and tissue metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.