Abstract. Applying additive manufacturing technologies in the tooling sector is reaching a new level with Laser Beam Melting, since this technology allows layer-by-layer manufacturing of completely dense tool and die inserts in standard high-alloyed tool steel. The technology is now ready to go beyond applications in low impact processes like plastic injection moulding and enters metal working process applications like metal forming and die casting. The potential of additive manufacturing for added value in tooling applications has now been investigated for various metal working processes.The paper presents results of research and pilot application projects to apply laser beam melting to manufacture tooling for metal forming and aluminium die casting. The paper describes the shortcomings of conventional cooling channels in metal working tools and the resulting inadequate cooling effect in critical areas. The paper shows how innovative cooling systems can be implemented in metal working dies through laser beam melted die inserts. Cooling of specific die areas has been realized by placing specially designed cooling channels very close to the die cavity, targeting shorter cycle times, structural and dimensional quality improvements of manufactured metal parts and a reduction of energy consumption for cooling and idle times of forming presses and die casting machines. The paper will present the achieved results for both metal working applications and point out the general potential of additive manufacturing in tooling.
Additive manufacturing for tooling applications has seen a new boost with emergence of laser beam melting, a technology being capable of layer manufacturing completely dense parts and tool inserts in standard high-alloyed tool steel. Moulding applications have been the first in making use of the advantageous conformal cooling, e. g. in plastic injection moulding and aluminium high pressure die casting. Forming dies as another potential application for layer manufactured tooling have been scarcely addressed so far. The potential of additive manufacturing for added value in tooling applications has now been investigated for sheet metal forming processes. The paper presents results of a research project to apply laser beam melting to manufacture tooling for the hot sheet metal forming process of press hardening. The paper describes the shortcomings of current cooling channels in press hardening tools and the resulting waste of energy and unsatisfactory cooling effect in critical areas with insufficient target temp achievement and heat dissipation. The paper shows how an innovative cooling system has been implemented in the die through laser beam melted die inserts. Cooling of specific die areas has been realized by placing specially designed cooling channels very close to the die cavity, targeting shorter cycle times, improved mechanical properties of press hardened parts manufactured in the die and a reduction of energy consumption for cooling and idle times of forming presses. The paper presents the achieved results
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.