The motion of a two-dimensional vortex pair moving toward a wall is studied numerically. The case for which the wall is heated is analyzed. The equations of momentum and energy conservation are solved using a finite volume scheme. In this manner, the instantaneous heat transfer from the wall is obtained and is related to the dynamics of the fluid vortex interacting with the wall. It was found that, as expected, when the fluid vortex approaches the wall, the heat transfer increases significantly. The heat transfer changes in a nonmonotonic manner as a function of time: When the vortex first reaches the wall, a volume of heated fluid is convected from the wall; this fluid volume circulates in the vicinity of the wall, causing the rate of heat transfer to decrease slightly, to then increase again. A wide range of Prandtl and Reynolds numbers were tested. A measure of the effective heat transfer coefficient, or Nusselt number, is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.