The computing continuum extends the high-performance cloud data centers with energy-efficient and low-latency devices close to the data sources located at the edge of the network. However, the heterogeneity of the computing continuum raises multiple challenges related to application management. These include where to offload an application -from the cloud to the edge -to meet its computation and communication requirements. To support these decisions, we provide in this article a detailed performance and carbon footprint analysis of a selection of use case applications with complementary resource requirements across the computing continuum over a real-life evaluation testbed.
Cloud computing provides a cheap and elastic platform for executing large scientific workflow applications, but it rises two challenges in prediction of makespan (total execution time): performance instability of Cloud instances and variant scheduling of dynamic schedulers. Estimating the makespan is necessary for IT managers in order to calculate the cost of execution, for which they can use Cloud simulators. However, the ideal simulated environment produces the same output for the same workflow schedule and input parameters and thus can not reproduce the Cloud variant behavior. In this paper, we define a model and a methodology to add a noise to the simulation in order to equalise its behavior with the Clouds' one. We propose several metrics to model a Cloud fluctuating behavior and then by injecting them within the simulator, it starts to behave as close as the real Cloud. Instead of using a normal distribution naively by using mean value and standard deviation of workflow tasks' runtime, we inject two noises in the tasks' runtime: noisiness of tasks within a workflow (defined as average runtime deviation) and noisiness provoked by the environment over the whole workflow (defined as average environmental deviation). In order to measure the quality of simulation by quantifying the relative difference between the simulated and measured values, we introduce the parameter inaccuracy. A series of experiments with different workflows and Cloud resources were conducted in order to evaluate our model and methodology. The results show that the inaccuracy of the makespan's mean value was reduced up to 59 times compared to naively using the normal distribution. Additionally, we analyse the impact of particular workflow and Cloud parameters, which shows that the Cloud performance instability is simulated more correctly for small instance type (inaccuracy of up to 11.5%), instead of medium (inaccuracy of up to 35%), regardless of the workflow. Since our approach requires collecting data by executing the workflow in the Cloud in order to learn its behavior, we conduct a comprehensive sensitivity analysis. We determine the minimum amount of data that needs to be collected or minimum number of test cases that needs to be repeated for each experiment in order to get less than 12% inaccuracy for our noising parameter. Additionally, in order to reduce the number of experiments and determine the dependency of our model against Cloud resource and workflow parameters, the conducted comprehensive sensitivity analysis shows that the correctness of our model is independent of workflow parallel section size. With our sensitivity analysis, we show that we can reduce the inaccuracy of the naive approach with only 40% of total number of executions per experiment in the learning phase. In our case, 20 executions per experiment instead of 50, and only half of all experiments, which means down to 20%, i.e. 120 test cases instead of 600.
Realistic, relevant, and reproducible experiments often need input traces collected from real-world environments. We focus in this work on traces of workflows-common in datacenters, clouds, and HPC infrastructures. We show that the state-of-the-art in using workflow-traces raises important issues: (1) the use of realistic traces is infrequent, and (2) the use of realistic, open-access traces even more so. Alleviating these issues, we introduce the Workflow Trace Archive (WTA), an open-access archive of workflow traces from diverse computing infrastructures and tooling to parse, validate, and analyze traces. The WTA includes >48 million workflows captured from >10 computing infrastructures, representing a broad diversity of trace domains and characteristics. To emphasize the importance of trace diversity, we characterize the WTA contents and analyze in simulation the impact of trace diversity on experiment results. Our results indicate significant differences in characteristics, properties, and workflow structures between workload sources, domains, and fields.
The cloud is an eco-system in which virtual machine instances are starting and terminating asynchronously on user demand or automatically when the load is rapidly increased or decreased. Although this dynamical environment allows to rent computing or storage resources cheaper rather than buying them, still it does not guarantee the stable execution during a period of time as the traditional physical environment. This is emphasised even more for workflows execution, since they consist of many data and control dependencies, which cause the makespan to be instable when a workflow is being executed in different periods of time in cloud. In this paper we analyse several parameters of workflow and the cloud environment that are expected to impact the workflow execution instability and investigate the correlation between them. The cloud parameters include the number of instances and their type, as well as the correlation with the efficient or inefficient execution of workflow parallel sections. We conduct a series of experiments, repeating each experiment by 30 test cases in order to evaluate instability for different cloud and workflow parameters. The results show a neglectfully correlation between each pair of parameters, as well as the tasks and file transfers within the workflow. Oppose to the expectations, the distribution of the makespan per experiment does not always comply with the normal distribution, which is also not correlated to a particular cloud or workflow parameter.
Abstract. Although simulators provide approximate, faster and easier simulation of an application execution in Clouds, still many researchers argue that these results cannot be always generalized for complex application types, which consist of many dependencies among tasks and various scheduling possibilities, such as workflows. DynamicCloudSim, the extension of the well known CloudSim simulator, offers users the capability to simulate the Cloud heterogeneity by introducing noisiness in dozens parameters. Still, it is difficult, or sometimes even impossible to determine appropriate values for all these parameters because they are usually Cloud or application-dependent. In this paper, we propose a new model that simplifies the simulation setup for a workflow and reduces the bias between the behavior of simulated and real Cloud environments based on one parameter only, the Cloud noisiness. It represents the noise produced by the Cloud's interference including the application's (in our case a workflow) noisiness too. Another novelty in our model is that it does not use a normal distribution naively to create noised values, but shifts the mean value of the task execution time by the cloud noisiness and uses its deviation as a standard deviation. Besides our model reduces the complexity of DynamicCloudSim's heterogeneity model, evaluation conducted in Amazon EC2 shows that it is also more accurate, with better trueness (closeness to the real mean values) of up to 9.2% and precision (closeness to the real deviation) of up to 8.39 times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.