Efforts to find the magnetic monopole in real space have been made in cosmic rays and in particle accelerators, but there has not yet been any firm evidence for its existence because of its very heavy mass, approximately 10(16) giga-electron volts. We show that the magnetic monopole can appear in the crystal momentum space of solids in the accessible low-energy region (approximately 0.1 to 1 electron volts) in the context of the anomalous Hall effect. We report experimental results together with first-principles calculations on the ferromagnetic crystal SrRuO3 that provide evidence for the magnetic monopole in the crystal momentum space.
We report magnetic, dielectric, and magnetodielectric responses of the pure monoclinic bulk phase of partially disordered La2NiMnO6, exhibiting a spectrum of unusual properties and establish that this compound is an intrinsically multiglass system with a large magnetodielectric coupling (8%-20%) over a wide range of temperatures (150-300 K). Specifically, our results establish a unique way to obtain colossal magnetodielectricity, independent of any striction effects, by engineering the asymmetric hopping contribution to the dielectric constant via the tuning of the relative-spin orientations between neighboring magnetic ions in a transition-metal oxide system. We discuss the role of antisite (Ni-Mn) disorder in emergence of these unusual properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.