Reindeer grazing has been entitled as ecological keystone in arctic-alpine landscapes. In addition, reindeer husbandry is tightly connected to the identity of the indigenous Sámi people in northern Europe. Nowadays, reindeer husbandry is challenged in several ways, of which pasture degradation, climate change, conflicting land uses and predation are the most important. Research on reindeer-related topics has been conducted for more than half a century and this review illuminates whether or not research is capable to match these challenges. Despite its high quality, traditional reindeer-related research is functionally isolated within the various disciplines. The meshwork of ecology, socio-economy, culture and politics, however, in which reindeer husbandry is embedded by various interactions, will remain unclear and difficult to manage, if actors and relationships are kept separate. We propose some targets for new integrative research approaches that incorporate traditional knowledge and focus on the entire human-ecological system 'reindeer husbandry' to develop solutions for its challenges.
Microbial communities in arctic-alpine soils show biogeographic patterns related to elevation, but the effect of fine-scale heterogeneity and possibly related temperature and soil moisture regimes remains unclear. We collected soil samples from different micro-topographic positions and elevational levels in two mountain regions of the Scandes, Central Norway. Microbial community composition was characterized by 16S rRNA gene amplicon sequencing and was dependent on microtopography and elevation. Underlying environmental drivers were identified by integration of microbial community data with a comprehensive set of site-specific long-term recorded temperature and soil moisture data. Partial least square regression analysis allowed the description of ecological response patterns and the identification of the important environmental drivers for each taxonomic group. This demonstrated for the first time that taxa responding to elevation were indeed most strongly defined by temperature, rather than by other environmental factors. Micro-topography affected taxa were primarily controlled by temperature and soil moisture. In general, 5-year datasets had higher explanatory power than 1year datasets, indicating that the microbial community composition is dependent on long-term developments of near-ground temperature and soil moisture regimes and possesses a certain resilience, which is in agreement with an often observed delayed response in global warming studies in arctic-alpine regions.
Aim Our main aim is to determine if ring-width variations in Empetrum hermaphroditum reflect regional or local topoclimate signals in an alpine environment. In the case that topoclimate provides the dominant signal, a secondary aim is to link these to spatial distribution patterns of different vegetation types.Location The study area is situated in the middle alpine belt in the Vågåmo region, Central Norwegian Scandes. Sampling sites cover different topoclimates: ridges, north-facing slopes and south-facing slopes.Methods We constructed ring-width chronologies of E. hermaphroditum for each type of microsite for the common period 1951-2004. Climate data were prepared on an hourly, daily and growing-season time scale. Climate-growth relationships were evaluated using bivariate correlations and regression tree methods for continuous time-series analyses. In addition, extreme growth anomalies (pointer years) were compared with the climate conditions in those years. The impact of water supply on wood anatomy was determined by correlating the conductive area (percentage of vessel per growth ring) with a running mean (sum) of 10-day intervals for temperature and precipitation.Results This study indicates that mean summer (June-August) temperatures determine the width of the growth rings of E. hermaphroditum irrespective of topoclimate. The length of the growing season, which is the most differentiating climatic factor between microsites, does not substantially alter the anatomical ring structure. Microsite differences in mean growth rates are attributed to the higher frequency of warm days. Extremely warm days limit ring-width development at south-facing slopes, while plants at ridges and north-facing slopes still benefit from higher temperatures. As a consequence, pointer years are not developed synchronously at all microsites. Vessel formation is affected by available moisture, especially in the later part of the growing season.Main conclusions Topoclimate induces slight modifications of annual growthring increments of E. hermaphroditum at different microsites. In contrast to the distribution patterns of vegetation types that are determined by snow cover, growth-ring variations are related to summer temperature conditions, and the prominent regional climate signal is still reflected at all microsites. This offers the opportunity to reconstruct climatic change in alpine regions from dwarf shrub ring-width chronologies.
BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.