Data integration is one of the core responsibilities of EDM (enterprise data management) and interoperability. It is essential for almost every digitalization project, e.g., during the migration from a legacy ERP (enterprise resource planning) software to a new system. One challenge is the incompatibility of data models, i.e., different software systems use specific or proprietary terminology, data structures, data formats, and semantics. Data need to be interchanged between software systems, and often complex data conversions or transformations are necessary. This paper presents an approach that allows software engineers or data experts to use models and patterns in order to specify data integration: it is based on data models such as ER (entity-relationship) diagrams or UML (unified modeling language) class models that are well-accepted and widely used in practice. Predefined data integration patterns are combined (applied) on the model level leading to formal, precise, and concise definitions of data transformations and conversions. Data integration definitions can then be executed (via code generation) so that a manual implementation is not necessary. The advantages are that existing data models can be reused, standardized data integration patterns lead to fast results, and data integration specifications are executable and can be easily maintained and extended. An example transformation of elements of a relational data model to object-oriented data structures shows the approach in practice. Its focus is on data mappings and relationships.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.