Glial fibrillary acidic protein (GFAP)-positive astrocytes with radial processes [radial glia (RG)-like cells] in the postnatal dentate gyrus share many of the characteristics of embryonic radial glia and appear to act as precursor cells for adult dentate neurogenesis, a process important for pattern separation and hippocampus-dependent learning. Although much work has delineated the mechanisms underlying activity-neurogenesis coupling via gamma-amino butyric acid (GABA)ergic neurotransmission on GFAP-negative transient-amplifying cells and neuroblasts, little is known regarding the effects of neurotransmitters on RG-like cells. Conflicting evidence exists for both GABA and glutamate receptors on these cells. Here, using GFAP reporter mice, we show that the somatic membrane of RG-like cells carries GABAA receptors and glutamate transporters but not ionotropic glutamate receptors, whereas 2-amino-3-(hydroxyl-5-methylisoxazole-4-yl) propionic acid (AMPA) and GABAA receptors are expressed on the processes of these cells. Almost all RG-like cells expressed the GluA2 subunit, which restricts the Ca(2+) permeability of AMPA receptors. The glial GABAA receptors mainly comprised α2/α4, β1, and γ1/γ3. The selective presence of AMPA receptors on the radial processes may be important for sensing and responding to local activity-driven glutamate release and supports the concept that RG-like astrocytes are composed of functional and structural domains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.