The present paper introduces a novel approach for measuring near wall flow velocities by utilizing a sublayer surface fence probe. Hereby, a difference in static pressure builds up over a microscopic obstacle within the viscous sublayer. An analytical model of the angular dependent pressure difference is employed to derive information about the flow direction. Furthermore, a computational preston tube approach has been used to calibrate the surface fence probe with regard to a flow velocity to be assigned to half of the fence height. Through the use of a sophisticated analyzing algorithm the flow direction and its velocity can be determined as a function of time. As a proof of concept measurements were conducted within the radial gap of an annular compressor rig yielding both mean and time resolved near wall flow fields. Former are in very good compliance with oil flow visualizations proving the methods accuracy. The experimental results give unprecedented insights into an unsteady flow phenomenon that arises when an axial compressor is operating close to its stalling limit. The presented technique allows for investigating turbomachinery areas which formerly were observable only by computational means.
The present work is the first of two papers investigating the operation principle of stall warning quantities. It discusses the use and implementation of novel stall warning techniques based on experimental tests. Each of the addressed techniques is based upon integral statistical analysis of time-resolved wall pressures in close proximity to the leading edge of a compressor rotor. The experiments were conducted on a low speed axial compressor test rig at the Chair of Aeroengines at the Technische Universität Berlin. The compressor suffers from a specific type of pre-stall instability. The signature within the frequency spectrum of this semi-stable operating point is in itself unique and was observed by many within the scientific community on numerous occasions and various axial compressor types, both low and high speed. Strong evidence has been elaborated which indicate that each of those so called stall warning indicator’s functionality is based upon the existence of this prestall phenomena. The first of two indicators is time-dependent as it evaluates the as-is state against surrounding operating points during transient manoeuvres. Furthermore, the impact of varying geometrical boundary conditions, which are known to regularly arise in flight operations, were taken into account. The functionality of the indicator is assured if the instrumentation is adjusted accordingly. The second indicator is mainly a location-dependent quantity as it evaluates the pressure signature along the axial direction within the rotor passage at various aerodynamic loadings. The latter also gave rise to some fundamental and preliminary understanding of the physics behind so called prestall disturbances.
The aim of the present paper is to improve the physical understanding of flow irregularities in the blade passing signal of turbomachinery rotors, since the novel stall warning method presented in part I is based upon those irregularities. For this purpose, a complementary instrumentation was used in a single stage axial compressor. A set of pressure transducers evenly distributed along the circumference surface mounted in the casing near the rotor tip leading edges is measuring the time-resolved wall pressures simultaneously to an array of transducers recording the chord-wise static pressures. The latter allows for plotting quasi-instantaneous 2D-pressure contours. Any occurring flow disturbances causing the before mentioned irregularity can later be classified using validated frequency analysis methods being applied to the data from the circumferential sensors. While leaving the flow coefficient constant, a continuously changing number of prestall flow disturbances appears to be causing the very spectral signature which is known from investigations on Rotating Instability. Any arising number of disturbances is matching a specific mode order to be found within the spectral signature. While the flow coefficient is reduced the propagation speed of prestall disturbances increases linearly as the speed seems to be independent from the clearance size. Data taken beyond the stalling limit demonstrate a complex superposition of stall cells and flow disturbances which the title “prestall disturbance” therefore doesn’t fit to precisely any more. Different convection speeds allow the phenomena to be clearly distinguished from each other.
The present paper investigates the aerodynamic performance of a cantilevered tandem stator based on experiments conducted within a high speed annular test rig at the Technische Universitaet Berlin. A tandem blade in this context describes a double rowed stator configuration where the turning of the incoming flow is split up between two blades arranged in succession. For evaluation purposes, a conventional single bladed stator is used as reference. To provide machine relevant boundary conditions of cantilevered stator assemblies, the moving hub wall is recreated by a rotating disk. Overall, the tandem stator is able to achieve higher flow turning while keeping the total pressure losses below those of a single stator. It is found that the tandem stator in general behaves similar to the conventional stator. When installed in cantilevered fashion, both stator types benefit considerably in terms of loss reduction. Without the hub clearance and therefore absence of the clearance flow, each of the configurations suffered from severe corner separation. The tandem stator responds more sensitively to change in clearance height.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.