Thymine DNA glycosylase (TDG) is a member of the uracil DNA glycosylase (UDG) superfamily of DNA repair enzymes. Owing to its ability to excise thymine when mispaired with guanine, it was proposed to act against the mutability of 5-methylcytosine (5-mC) deamination in mammalian DNA. However, TDG was also found to interact with transcription factors, histone acetyltransferases and de novo DNA methyltransferases, and it has been associated with DNA demethylation in gene promoters following activation of transcription, altogether implicating an engagement in gene regulation rather than DNA repair. Here we use a mouse genetic approach to determine the biological function of this multifaceted DNA repair enzyme. We find that, unlike other DNA glycosylases, TDG is essential for embryonic development, and that this phenotype is associated with epigenetic aberrations affecting the expression of developmental genes. Fibroblasts derived from Tdg null embryos (mouse embryonic fibroblasts, MEFs) show impaired gene regulation, coincident with imbalanced histone modification and CpG methylation at promoters of affected genes. TDG associates with the promoters of such genes both in fibroblasts and in embryonic stem cells (ESCs), but epigenetic aberrations only appear upon cell lineage commitment. We show that TDG contributes to the maintenance of active and bivalent chromatin throughout cell differentiation, facilitating a proper assembly of chromatin-modifying complexes and initiating base excision repair to counter aberrant de novo methylation. We thus conclude that TDG-dependent DNA repair has evolved to provide epigenetic stability in lineage committed cells.
U.Hardeland and R.Steinacher contributed equally to this work DNA glycosylases initiate base excision repair (BER) through the generation of potentially harmful abasic sites (AP sites) in DNA. Human thymine-DNA glycosylase (TDG) is a mismatch-speci®c uracil/thymine-DNA glycosylase with an implicated function in the restoration of G´C base pairs at sites of cytosine or 5-methylcytosine deamination. The rate-limiting step in the action of TDG in vitro is its dissociation from the product AP site, suggesting the existence of a speci®c enzyme release mechanism in vivo. We show here that TDG interacts with and is covalently modi®ed by the ubiquitin-like proteins SUMO-1 and SUMO-2/3. SUMO conjugation dramatically reduces the DNA substrate and AP site binding af®nity of TDG, and this is associated with a signi®cant increase in enzymatic turnover in reactions with a G´U substrate and the loss of G´T processing activity. Sumoylation also potentiates the stimulatory effect of APE1 on TDG. These observations implicate a function of sumoylation in the controlled dissociation of TDG from the AP site and open up novel perspectives for the understanding of the molecular mechanisms coordinating the early steps of BER.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.