Isomeric oxathiolone fused chalcones were prepared by condensation of appropriate acetylbenzo[1,3]-oxathiol-2-ones with benzaldehydes under acidic conditions. The synthesized compounds were screened for cytotoxic activity using HeLa cells, as well as for antibacterial activity against Micrococcus luteus, Staphylococcus aureus, Salmonella typhimurium, Escherichia coli, Proteus vulgaris, antifungal activity against Candida albicans, and tuberculostatic activity against Mycobacterium tuberculosis H 37 Rv and Mycobacterium kansasii strains.
In vitro activity of voriconazole against fluconazole-resistant Candida albicans clinical isolates with identified molecular basis of multidrug resistance (MDR) and recombinant Saccharomyces cerevisiae expressing C. albicans genes coding for major multidrug transporters, CaCdr1p, CaCdr2p or CaMdr1p, was compared with that of fluconazole, ketoconazole and clotrimazole. It was found that overexpression of the MDR genes made the yeast cells less susceptible to voriconazole. The voriconazole resistance indexes, defined as a ratio of minimum inhibitory concentrations (MICs) determined for MDR and sensitive cells, were comparable with those determined for fluconazole. Voriconazole effectively competed with rhodamine 6G for the active efflux mediated by CaCdr1p and CaCdr2p.
The susceptibility to several oligopeptide and amino acid antifungals of a Saccharomyces cerevisiae strain carrying multiple deletions in yeast multidrug resistance genes was compared to transformants containing the CDR1, CDR2, or MDR1 genes that encode the major Candida albicans drug efflux pumps. Recombinant yeast strains overexpressing Cdr1p and Cdr2p showed enhanced susceptibilities to all tested oligopeptide antifungals. The enhanced susceptibilities of multidrug-resistant yeast strains to oligopeptide antifungals corresponded to higher rates of oligopeptide uptake. Yeast cells overexpressing Cdr1p or Cdr2p effluxed protons at higher rates than the reference cells lacking these ABC transporters. An increased plasma membrane electrochemical gradient caused by the functional overexpression of Cdr1p or Cdr2p appeared to increase cellular susceptibility to oligopeptide antifungals by stimulating their uptake via oligopeptide permeases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.