Building on Pierre Simon’s notion of distality, we introduce distality rank as a property of first-order theories and give examples for each rank m such that $1\leq m \leq \omega $ . For NIP theories, we show that distality rank is invariant under base change. We also define a generalization of type orthogonality called m-determinacy and show that theories of distality rank m require certain products to be m-determined. Furthermore, for NIP theories, this behavior characterizes m-distality. If we narrow the scope to stable theories, we observe that m-distality can be characterized by the maximum cycle size found in the forking “geometry,” so it coincides with $(m-1)$ -triviality. On a broader scale, we see that m-distality is a strengthening of Saharon Shelah’s notion of m-dependence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.