Elimination of IgG can be achieved by extracorporeal immunoadsorption (IA) based on specific binding to either staphylococcal protein A (Excorim) or sheep polyclonal antibodies directed against human IgG (Therasorb). In 602 analyzed sessions of IA, elimination of IgG was 60% through 80% depending on the treated plasma volume, with no significant difference between the mentioned systems. However, the decrease of IgM and IgA was approximately 50% in the anti-IgG compared to 20-40% in the protein A system. Plasma albumin concentration decreased by 20% in the anti-IgG system compared to 15% in the protein A system, and hemoglobin values increased by 2% in the anti-IgG system and decreased by 6% in the protein A system. In conclusion, a clinical relevance for these findings cannot be ruled out, and the individual choice might depend on the clinical situation and laboratory findings.
BackgroundIntradialytic hypotension (IDH) is still a major clinical problem for haemodialysis (HD) patients. Haemodiafiltration (HDF) has been shown to be able to reduce the incidence of IDH.MethodsFifty patients were enrolled in a prospective, randomized, crossover international study focussed on a variant of traditional HDF, haemofiltration with endogenous reinfusion (HFR). After a 1-month run-in period on HFR, the patients were randomized to two treatments of 2 months duration: HFR (Period A) or HFR-Aequilibrium (Period B), followed by a 1-month HFR wash-out period and then switched to the other treatment. HFR-Aequilibrium (HFR-Aeq) is an evolution of the haemofiltration with endogenous reinfusion (HFR) dialysis therapy, with dialysate sodium concentration and ultrafiltration rate profiles elaborated by an automated procedure. The primary end point was the frequency of IDH.ResultsSymptomatic hypotension episodes were significantly lower on HFR-Aeq versus HFR (23 ± 3 versus 31 ± 4% of sessions, respectively, P l= l0.03), as was the per cent of clinical interventions (17 ± 3% of sessions with almost one intervention on HFR-Aeq versus 22 ± 2% on HFR, P <0.01). In a post-hoc analysis, the effect of HFR-Aeq was greater on more unstable patients (35 ± 3% of sessions with hypotension on HFR-Aeq versus 71 ± 3% on HFR, P <0.001). No clinical or biochemical signs of Na/water overload were registered during the treatment with HFR-Aeq.ConclusionsHFR-Aeq, a profiled dialysis supported by the Natrium sensor for the pre-dialysis Na+ measure, can significantly reduce the burden of IDH. This could have an important impact in every day dialysis practice.
The 4MOST consortium is currently halfway through a Conceptual Design study for ESO with the aim to develop a wide-field (>3 square degree, goal >5 square degree), high-multiplex (>1500 fibres, goal 3000 fibres) spectroscopic survey facility for an ESO 4m-class telescope (VISTA). 4MOST will run permanently on the telescope to perform a 5 year public survey yielding more than 20 million spectra at resolution R∼5000 (λ=390-1000 nm) and more than 2 million spectra at R~20,000 (395-456.5 nm & 587-673 nm). The 4MOST design is especially intended to complement three key all-sky, space-based observatories of prime European interest: Gaia, eROSITA and Euclid. Initial design and performance estimates for the wide-field corrector concepts are presented. Two fibre positioner concepts are being considered for 4MOST. The first one is a Phi-Theta system similar to ones used on existing and planned facilities. The second one is a new R-Theta concept with large patrol area. Both positioner concepts effectively address the issues of fibre focus and pupil pointing. The 4MOST spectrographs are fixed configuration two-arm spectrographs, with dedicated spectrographs for the high-and low-resolution fibres. A full facility simulator is being developed to guide trade-off decisions regarding the optimal field-of-view, number of fibres needed, and the relative fraction of high-to-low resolution fibres. The simulator takes mock catalogues with template spectra from Design Reference Surveys as starting point, calculates the output spectra based on a throughput simulator, assigns targets to fibres based on the capabilities of the fibre positioner designs, and calculates the required survey time by tiling the fields on the sky. The 4MOST consortium aims to deliver the full 4MOST facility by the end of 2018 and start delivering high-level data products for both consortium and ESO community targets a year later with yearly increments.
High dimensions have a devastating effect on the FCM algorithm and similar algorithms. One effect is that the prototypes run into the centre of gravity of the entire data set. The objective function must have a local minimum in the centre of gravity that causes FCM’s behaviour. In this paper, examine this problem. This paper answers the following questions: How many dimensions are necessary to cause an ill behaviour of FCM? How does the number of prototypes influence the behaviour? Why has the objective function a local minimum in the centre of gravity? How must FCM be initialised to avoid the local minima in the centre of gravity? To understand the behaviour of the FCM algorithm and answer the above questions, the authors examine the values of the objective function and develop three test environments that consist of artificially generated data sets to provide a controlled environment. The paper concludes that FCM can only be applied successfully in high dimensions if the prototypes are initialized very close to the cluster centres.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.