This work shows the formation of a heterojunction between tin (II) sulfide (SnS) and electrochemically reduced graphene oxide (ERGO), carried out through two electrochemical steps. In the first step, graphene oxide (GO) was electrochemically reduced on a fluorine-doped tin oxide (FTO) electrode. In the second step, the ERGO/FTO substrate was used as an electrode for the electrodeposition of SnS. In this study, each electrodeposited material (ERGO, SnS and SnS/ERGO heterojunction) was analyzed and characterized using different techniques, which confirmed the SnS/ERGO heterojunction formation. By employ-ing electrochemical impedance spectroscopy (EIS) and linear sweep photovoltammetry measurements, it was confirmed that SnS deposited in both, bare FTO and ERGO, is a p-type semiconductor. Furthermore, an improvement of the photocatalytic properties of the SnS/ERGO photocathode in comparison with the SnS film was observed. This effect is related to the ERGO interlayer between the SnS film and the FTO electrode, and the structural and morphology modification of the SnS film onto ERGO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.