Digitization and technological transformation in agriculture is no longer something of the future, but of the present. Many crops are being managed by using sophisticated sensors that allow farmers to know the status of their crops at all times. This modernization of crops also allows for better quality harvests as well as significant cost savings. In this study, we present a tool based on Deep Learning that allows us to analyse different varieties of plums using image analysis to identify the variety and its ripeness status. The novelty of the system is the conditions in which the designed algorithm can work. An uncontrolled photographic acquisition method has been implemented. The user can take a photograph with any device, smartphone, camera, etc., directly in the field, regardless of light conditions, focus, etc. The robustness of the system presented allows us to differentiate, with 92.83% effectiveness, three varieties of plums through images taken directly in the field and values above 94% when the ripening stage of each variety is analyzed independently. We have worked with three varieties of plums, Red Beaut, Black Diamond and Angeleno, with different ripening cycles. This has allowed us to obtain a robust classification system that will allow users to differentiate between these varieties and subsequently determine the ripening stage of the particular variety.
This paper presents a new method with a set of desirable properties for multi-pitch estimation of piano recordings. We propose a framework based on a set of classifiers to analyze audio input and to identify piano notes present in a given audio signal. Our system’s classifiers are evolved using Cartesian genetic programming: we take advantage of Cartesian genetic programming to evolve a set of mathematical functions that act as independent classifiers for piano notes. Two significant improvements are described: the use of a harmonic mask for better fitness values and a data augmentation process for improving the training stage. The proposed approach achieves competitive results using F-measure metrics when compared to state-of-the-art algorithms. Then, we go beyond piano and show how it can be directly applied to other musical instruments, achieving even better results. Our system’s architecture is also described to show the feasibility of its parallelization and its implementation as a real-time system. Our methodology is also a white-box optimization approach that allows for clear analysis of the solutions found and for researchers to learn and test improvements based on the new findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.