We investigated how protein changes occur, at the primary or higher structural levels, when proteins are exposed to UV or fluorescent (FL) light while in the complex matrix, milk. Whole milk (WM) or skim milk (SM) samples were exposed to FL or UV light from 0 to 24h at 4°C. Protein oxidation was evaluated by the formation of protein carbonyls (PC), dityrosine bond (DiTyr), and changes in molecular weight (protein fragmentation and polymerization). Oxidative changes in AA residues were measured by PC. Dityrosine and N'-formylkynurenine (NFK), a carbonylation derivative of Trp, were measured by fluorometry. Protein carbonyls increased as a function of irradiation time for both WM and SM. The initial rate for PC formation by exposure to FL light (0.25 or 0.27 nmol/h for WM and SM, respectively) was slower than that following exposure to UV light (1.95 or 1.20 nmol/h, respectively). The time course of NFK formation resembled that of PC. After 24h of UV exposure, SM had significantly higher levels of NFK than did WM. In contrast, WM samples irradiated with UV had higher levels of DiTyr than did SM samples, indicating different molecular pathways. The formation of intra- or intermolecular DiTyr bonds could be indicative of changes in the tertiary structure or oligomerization of proteins. The existence of NFK suggests the occurrence of protein fragmentation. Thus, proteolysis and oligomerization were analyzed by sodium dodecyl sulfate-PAGE. After 24h of exposing WM to UV or FL light, all the proteins were affected by both types of light, as evidenced by loss of material in most of the bands. Aggregates were produced only by UV irradiation. Hydrolysis by pepsin and enzyme-induced coagulation by rennet were performed to evaluate altered biological properties of the oxidized proteins. No effect on pepsin digestion or rennet coagulation was found in irradiated SM or WM. The oxidative status of proteins in milk and dairy products is of interest to the dairy industry and consumers. These findings provide knowledge that could be useful in determining the optimal lighting conditions in the dairy industry in general and in cheese making in particular.
The objective of the present research was to evaluate commercially available milk powders according to their protein oxidative modifications and antioxidant capacity, and to evaluate if these characteristics are related to physical quality parameters such as dispersibility or stability during storage. Fifteen commercially processed spray-dried milk powders were evaluated: 6 whole milk powders (WMP), 4 skim milk powders (SMP), and 5 infant formula powders (IFP). Protein oxidative status was measured as protein carbonyl (PC) content, dityrosine content, and extent of protein polymerization. The level of PC was slightly lower in SMP than in WMP, whereas IFP had more than twice as much PC as WMP (2.8 ± 0.4, 2.1 ± 0.2, and 6.5 ± 1.3 nmol/mg of protein for WMP, SMP, and IFP, respectively). No differences were detected in dityrosine accumulation. Although all the possible pairs of parameters were tested for correlations, we found that 4 parameters were linked: PC, whey content, protein aggregate level, and dispersibility. After 9 mo of storage at -20°C or room temperature, all milk samples were analyzed to evaluate changes in protein oxidative status (PC, dityrosine, and protein integrity) and related parameters. Compared with the initial condition, PC increased in all tested samples after 9 mo of storage at -20°C or at room temperature. Stored milk powders had increased PC and decreased dispersibility compared with prestorage levels. Our results highlight the importance of protein oxidative status in milk powder and its relationship to other related quality parameters, such as protein integrity and dispersibility. Our findings suggest that the understanding of such relationships could help in developing quality differentiation for different types of milk powders in the product market.
Total, non-volatile free fatty acids (FFA) content was determined in hake muscle during fkh storage in ice. FFA increased linearly in every season according to freshness loss as determined by sensory scoring. FFA determination is proposed as a valuable alternative to sensory scoring in determining fkh deterioration in ice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.