p21-activated protein kinase ␥-PAK (Pak2, PAK I) is cleaved by CPP32 (caspase 3) during apoptosis and plays a key role in regulation of cell death. In vitro, CPP32 cleaves recombinant ␥-PAK into two peptides; 1-212 contains the majority of the regulatory domain whereas 213-524 contains 34 amino acids of the regulatory domain plus the entire catalytic domain. Following cleavage, both peptides become autophosphorylated with [␥-32 P]ATP. Peptide 1-212 migrates at 27,000 daltons (p27) upon SDS-polyacrylamide gel electrophoresis and at 32,000 daltons following autophosphorylation on serine (p27P); the catalytic subunit migrates at 34,000 daltons (p34) before and after autophosphorylation on threonine. Following caspase cleavage, a significant lag (ϳ5 min) is observed before autophosphorylation and activity are detected. When ␥-PAK is autophosphorylated with ATP(Mg) alone and then cleaved, only p27 contains phosphate, and the enzyme is inactive with exogenous substrate. After autophosphorylation of ␥-PAK in the presence of Cdc42(GTP␥S) or histone 4, both cleavage products contain phosphate and ␥-PAK is catalytically active. Mutation of the conserved Thr-402 to alanine greatly reduces autophosphorylation and protein kinase activity following cleavage. Thus activation of ␥-PAK via cleavage by CPP32 is a two-step mechanism wherein autophosphorylation of the regulatory domain is a priming step, and activation coincides with autophosphorylation of the catalytic domain.
We have examined the properties of two Drosophila RNA polymerase II mutants, C4 and S1, during elongation, pyrophosphorolysis, and DmS-II-stimulated transcript cleavage. The C4 and S1 mutants contain a single amino acid substitution in the largest and second largest subunits, respectively. Compared with wild type, C4 had a lower elongation rate and was less efficient at reading through intrinsic elongation blocks. S1 had a higher elongation rate than wild type and was more efficient at reading through the same blocks. During elongation, C4 and wild type responded similarly to DmS-II and NH4+ whereas the S1 mutant was less responsive to both. Differences between the two mutants also appeared during DmS-II-mediated transcript cleavage and pyrophosphorolysis. During extended pyrophosphorolysis, S1 polymerase was fastest and C4 polymerase was slowest at generating the final pattern of shortened transcripts. S1 and wild type were equal in the rate of extended DmS-II mediated transcript cleavage, and C4 was slower. Our results suggest that the S1 mutation increases the time spent by the polymerase in elongation competent mode and that the C4 mutation may affect the movement of the polymerase.
In response to stress stimulants, cells activate opposing signaling pathways for cell survival and programmed cell death. p21-activated protein kinase ␥-PAK is involved in both cell survival and cell death pathways. Many stress stimulants activate ␥-PAK as a full-length enzyme and as a proteolytic fragment. Caspase-mediated proteolytic activation parallels cell death and appears to be a pro-apoptotic factor in stress-induced cell death. Here, we show that activation of full-length ␥-PAK promotes cell survival and suppresses stress-induced cell death. Expression of constitutively active ␥-PAK-T402E, which mimics activated full-length ␥-PAK, stimulates cell survival of BALB3T3 fibroblasts in response to tumor necrosis factor ␣, growth factor withdrawal, and UVC light. This stimulation of cell survival is mainly due to protection of cells from cell death rather than by stimulation of proliferation. Expression of ␥-PAK-T402E increases phosphorylation of the proapoptotic Bcl-2 family protein Bad and protects from cell death induced by ectopic expression of Bad. In response to tumor necrosis factor ␣, expression of ␥-PAK-T402E increases the early but reduces the late activation of ERK, JNK, and p38. Our results indicate that the ubiquitous ␥-PAK may have a crucial function in cell survival by regulating the pro-apoptotic activity of Bad and the stress-induced activation of ERK, JNK, and p38 pathways.
p21-activated protein kinases (PAKs) are a family of serine/threonine protein kinases that are activated by binding of the p21 G proteins Cdc42 or Rac. The ubiquitous PAK-2 (␥-PAK) is unique among the PAK isoforms because it is also activated through proteolytic cleavage by caspases or caspase-like proteases. In response to stress stimulants such as tumor necrosis factor ␣ or growth factor withdrawal, PAK-2 is activated as a fulllength enzyme and as a proteolytic PAK-2p34 fragment. Activation of full-length PAK-2 stimulates cell survival, whereas proteolytic activation of PAK-2p34 is involved in programmed cell death. Here we provide evidence that the proapoptotic effect of PAK-2p34 is regulated by subcellular targeting and degradation by the proteasome. Full-length PAK-2 is localized in the cytoplasm, whereas the proteolytic PAK-2p34 fragment translocates to the nucleus. Subcellular localization of PAK-2 is regulated by nuclear localization and nuclear export signal motifs. A nuclear export signal motif within the regulatory domain prevents nuclear localization of fulllength PAK-2. Proteolytic activation removes most of the regulatory domain and disrupts the nuclear export signal. The activated PAK-2p34 fragment contains a nuclear localization signal and translocates to the nucleus. However, levels of activated PAK-2p34 are tightly regulated through ubiquitination and degradation by the proteasome. Inhibition of degradation by blocking polyubiquitination results in significantly increased levels of PAK-2p34 and as a consequence, in stimulation of programmed cell death. Therefore, nuclear targeting and inhibition of degradation appear to be critical for stimulation of the cell death response by PAK-2p34.
oxide synthase (nNOS), thereby reducing nNOS activity. Furthermore, nNOS expression and activity were significantly increased in differentiated PC12 cells after NGF withdrawal. This increased nNOS activity as well as increased nNOS dimer after NGF withdrawal were inhibited by COX-2 or DLC/PIN overexpression. An nNOS inhibitor or a membrane-permeable superoxide dismutase (SOD) mimetic protected differentiated PC12 cells from NGF withdrawal apoptosis. In contrast, NO donors induced apoptosis in differentiated PC12 cells and potentiated apoptosis induced by NGF withdrawal. The protective effects of COX-2 on apoptosis induced by NGF withdrawal were also overcome by NO donors. These findings suggest that COX-2 promotes cell survival by a mechanism linking increased expression of prosurvival genes coupled to inhibition of NO-and superoxide-mediated apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.